Suppr超能文献

Membrane control of ciliary movement in ciliates.

作者信息

Andrivon C

机构信息

Université Blaise Pascal (Clermont II), Aubière, France.

出版信息

Biol Cell. 1988;63(2):133-42. doi: 10.1016/0248-4900(88)90052-4.

Abstract

Ciliary movement is generated in the axoneme by the unidirectional sliding of the outer doublets of microtubules produced by the adenosine triphosphate (ATP)-energized dynein arms. It is composed of an effective stroke phase and a passive recovery stroke phase. Two parameters are modulated to determine swimming characteristics of the cell (speed and direction): beat frequency; direction of the effective stroke. They are linked to the internal Ca++ level and to the membrane potential. The membrane governs the internal Ca++ level by regulating Ca++ influx and efflux. It contains voltage-sensitive Ca++ channels through which a passive Ca++ influx, driven by the electrochemical gradient, occurs during step depolarization. The rise of the Ca++ level, up to 6.10-7M triggers ciliary reversal and enhances beat frequency. Ca+ is extruded from cilia by active transport. Ca++ also activates a multistep enzymatic process, the first component of which is a membrane calmodulin-dependent guanylate cyclase. cGMP interacts with Ca++ to modulate the parameters of the ciliary beat. The phosphorylation-dephosphorylation cycle of axoneme and membrane proteins seems to play a major role in controlling ciliary movement. Hyperpolarization of the membrane enhances beat frequency by an unknown mechanism. It could be a modification of the ratio of axonemal bound Ca++ and Mg++, or activation by cyclic adenosine monophosphate (cAMP) produced by a membrane adenylate cyclase. The ciliary membrane behaves as a receptor able to detect modifications of external parameters, and as a transductor transmitting the detected signal by a second or third messengers toward the interior of the cilia. These messengers. acting at different levels, modulate the parameters of the mechanism that generates ciliary movement.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验