Suppr超能文献

洛特卡-沃尔泰拉竞争博弈中的无限生态位填充

Unlimited niche packing in a Lotka-Volterra competition game.

作者信息

Cressman Ross, Halloway Abdel, McNickle Gordon G, Apaloo Joe, Brown Joel S, Vincent Thomas L

机构信息

Department of Mathematics, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada.

Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA.

出版信息

Theor Popul Biol. 2017 Aug;116:1-17. doi: 10.1016/j.tpb.2017.04.003. Epub 2017 May 8.

Abstract

A central question in the study of ecology and evolution is: "Why are there so many species?" It has been shown that certain forms of the Lotka-Volterra (L-V) competition equations lead to an unlimited number of species. Furthermore, these authors note how any change in the nature of competition (the competition kernel) leads to a finite or small number of coexisting species. Here we build upon these works by further investigating the L-V model of unlimited niche packing as a reference model and evolutionary game for understanding the environmental factors restricting biodiversity. We also examine the combined eco-evolutionary dynamics leading up to the species diversity and traits of the ESS community in both unlimited and finite niche-packing versions of the model. As an L-V game with symmetric competition, we let the strategies of individuals determine the strength of the competitive interaction (like competes most with like) and also the carrying capacity of the population. We use a mixture of analytic proofs (for one and two species systems) and numerical simulations. For the model of unlimited niche packing, we show that a finite number of species will evolve to specific convergent stable minima of the adaptive landscape (also known as species archetypes). Starting with a single species, faunal buildup can proceed either through species doubling as each diversity-specific set of minima are reached, or through the addition of species one-by-one by randomly assigning a speciation event to one of the species. Either way it is possible for an unlimited number or species to evolve and coexist. We examine two simple and biologically likely ways for breaking the unlimited niche-packing: (1) some minimum level of competition among species, and (2) constrain the fundamental niche of the trait space to a finite interval. When examined under both ecological and evolutionary dynamics, both modifications result in convergent stable ESSs with a finite number of species. When the number of species is held below the number of species in an ESS coalition, we see a diverse array of convergent stable niche archetypes that consist of some species at maxima and some at minima of the adaptive landscape. Our results support those of others and suggest that instead of focusing on why there are so many species we might just as usefully ask, why are there so few species?

摘要

生态学与进化研究中的一个核心问题是

“为什么会有这么多物种?” 研究表明,某些形式的洛特卡 - 沃尔泰拉(L - V)竞争方程会导致物种数量无限。此外,这些作者还指出竞争性质(竞争核)的任何变化如何导致共存物种数量有限或较少。在此,我们以这些研究为基础,进一步研究无限生态位填充的L - V模型,将其作为理解限制生物多样性的环境因素的参考模型和进化博弈。我们还研究了在模型的无限和有限生态位填充版本中,导致ESS群落物种多样性和特征的生态 - 进化动态组合。作为一个具有对称竞争的L - V博弈,我们让个体的策略决定竞争相互作用的强度(同类之间竞争最为激烈)以及种群的承载能力。我们使用了分析证明(针对单物种和双物种系统)与数值模拟相结合的方法。对于无限生态位填充模型,我们表明有限数量的物种将进化到适应度景观的特定收敛稳定最小值(也称为物种原型)。从单个物种开始,动物群的积累可以通过在达到每个特定多样性的最小值集时物种数量翻倍来进行,或者通过将物种形成事件随机分配给其中一个物种来逐个添加物种。无论哪种方式,都有可能进化并共存无限数量的物种。我们研究了两种简单且符合生物学常理的打破无限生态位填充的方法:(1)物种之间存在某种最低水平的竞争,以及(2)将性状空间的基本生态位限制在一个有限区间内。在生态和进化动态下进行研究时,这两种修改都会导致具有有限数量物种的收敛稳定ESS。当物种数量保持在ESS联盟中的物种数量以下时,我们会看到一系列不同的收敛稳定生态位原型,其中一些物种处于适应度景观的最大值,而另一些处于最小值。我们的结果支持了其他人的研究结果,并表明与其关注为什么有这么多物种,我们不妨同样有效地问,为什么物种如此之少?

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验