Butler Michael R, Ma Hongwei, Yang Fan, Belcher Joshua, Le Yun-Zheng, Mikoshiba Katsuhiko, Biel Martin, Michalakis Stylianos, Iuso Anthony, Križaj David, Ding Xi-Qin
From the Departments of Cell Biology.
Internal Medicine, and.
J Biol Chem. 2017 Jul 7;292(27):11189-11205. doi: 10.1074/jbc.M117.782326. Epub 2017 May 11.
Endoplasmic reticulum (ER) stress and mislocalization of improperly folded proteins have been shown to contribute to photoreceptor death in models of inherited retinal degenerative diseases. In particular, mice with cone cyclic nucleotide-gated (CNG) channel deficiency, a model for achromatopsia, display both early-onset ER stress and opsin mistrafficking. By 2 weeks of age, these mice show elevated signaling from all three arms of the ER-stress pathway, and by 1 month, cone opsin is improperly distributed away from its normal outer segment location to other retinal layers. This work investigated the role of Ca-release channels in ER stress, protein mislocalization, and cone death in a mouse model of CNG-channel deficiency. We examined whether preservation of luminal Ca stores through pharmacological and genetic suppression of ER Ca efflux protects cones by attenuating ER stress. We demonstrated that the inhibition of ER Ca-efflux channels reduced all three arms of ER-stress signaling while improving opsin trafficking to cone outer segments and decreasing cone death by 20-35%. Cone-specific gene deletion of the inositol-1,4,5-trisphosphate receptor type I (IPR1) also significantly increased cone density in the CNG-channel-deficient mice, suggesting that IPR1 signaling contributes to Ca homeostasis and cone survival. Consistent with the important contribution of organellar Ca signaling in this achromatopsia mouse model, significant differences in dynamic intraorganellar Ca levels were detected in CNG-channel-deficient cones. These results thus identify a novel molecular link between Ca homeostasis and cone degeneration, thereby revealing novel therapeutic targets to preserve cones in inherited retinal degenerative diseases.
内质网(ER)应激以及错误折叠蛋白的错误定位已被证明在遗传性视网膜退行性疾病模型中会导致光感受器死亡。特别是,患有视锥细胞环核苷酸门控(CNG)通道缺陷的小鼠,即全色盲模型,表现出早期内质网应激和视蛋白运输错误。在2周龄时,这些小鼠的内质网应激途径的所有三个分支的信号传导均升高,到1个月时,视锥视蛋白从其正常的外段位置错误分布到其他视网膜层。这项研究调查了钙释放通道在CNG通道缺陷小鼠模型的内质网应激、蛋白质错误定位和视锥细胞死亡中的作用。我们研究了通过对内质网钙外流进行药理学和基因抑制来维持内质网腔钙储存是否能通过减轻内质网应激来保护视锥细胞。我们证明,抑制内质网钙外流通道可减少内质网应激信号传导的所有三个分支,同时改善视蛋白向视锥细胞外段的运输,并使视锥细胞死亡减少20 - 35%。视锥细胞特异性敲除I型肌醇-1,4,5-三磷酸受体(IPR1)也显著增加了CNG通道缺陷小鼠的视锥细胞密度,这表明IPR1信号传导有助于钙稳态和视锥细胞存活。与细胞器钙信号在这个全色盲小鼠模型中的重要作用一致,在CNG通道缺陷的视锥细胞中检测到细胞器内钙水平动态存在显著差异。因此,这些结果确定了钙稳态与视锥细胞退化之间的一种新的分子联系,从而揭示了在遗传性视网膜退行性疾病中保护视锥细胞的新治疗靶点。