Suppr超能文献

真核生物前导链和后随链上的跨损伤DNA合成:绕过同一障碍的独特路径

Eukaryotic Translesion DNA Synthesis on the Leading and Lagging Strands: Unique Detours around the Same Obstacle.

作者信息

Hedglin Mark, Benkovic Stephen J

机构信息

Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.

出版信息

Chem Rev. 2017 Jun 28;117(12):7857-7877. doi: 10.1021/acs.chemrev.7b00046. Epub 2017 May 12.

Abstract

During S-phase, minor DNA damage may be overcome by DNA damage tolerance (DDT) pathways that bypass such obstacles, postponing repair of the offending damage to complete the cell cycle and maintain cell survival. In translesion DNA synthesis (TLS), specialized DNA polymerases replicate the damaged DNA, allowing stringent DNA synthesis by a replicative polymerase to resume beyond the offending damage. Dysregulation of this DDT pathway in human cells leads to increased mutation rates that may contribute to the onset of cancer. Furthermore, TLS affords human cancer cells the ability to counteract chemotherapeutic agents that elicit cell death by damaging DNA in actively replicating cells. Currently, it is unclear how this critical pathway unfolds, in particular, where and when TLS occurs on each template strand. Given the semidiscontinuous nature of DNA replication, it is likely that TLS on the leading and lagging strand templates is unique for each strand. Since the discovery of DDT in the late 1960s, most studies on TLS in eukaryotes have focused on DNA lesions resulting from ultraviolet (UV) radiation exposure. In this review, we revisit these and other related studies to dissect the step-by-step intricacies of this complex process, provide our current understanding of TLS on leading and lagging strand templates, and propose testable hypotheses to gain further insights.

摘要

在S期,轻微的DNA损伤可通过DNA损伤耐受(DDT)途径克服,该途径绕过此类障碍,将有害损伤的修复推迟到细胞周期完成以维持细胞存活。在跨损伤DNA合成(TLS)中,特殊的DNA聚合酶复制受损的DNA,使复制性聚合酶进行严格的DNA合成,以在有害损伤之外恢复。人类细胞中该DDT途径的失调会导致突变率增加,这可能促使癌症发生。此外,TLS使人类癌细胞有能力对抗通过损伤活跃复制细胞中的DNA而引发细胞死亡的化疗药物。目前,尚不清楚这一关键途径是如何展开的,尤其是每条模板链上TLS发生的位置和时间。鉴于DNA复制的半不连续性质,前导链和后随链模板上的TLS可能对每条链而言都是独特的。自20世纪60年代末发现DDT以来,大多数关于真核生物中TLS的研究都集中在紫外线(UV)辐射暴露导致的DNA损伤上。在本综述中,我们重新审视这些及其他相关研究,剖析这一复杂过程的逐步复杂性,阐述我们目前对前导链和后随链模板上TLS的理解,并提出可验证的假设以获得进一步的见解。

相似文献

1
Eukaryotic Translesion DNA Synthesis on the Leading and Lagging Strands: Unique Detours around the Same Obstacle.
Chem Rev. 2017 Jun 28;117(12):7857-7877. doi: 10.1021/acs.chemrev.7b00046. Epub 2017 May 12.
5
Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health.
Mol Cell Biol. 2023;43(8):401-425. doi: 10.1080/10985549.2023.2224199. Epub 2023 Jul 13.
8
DNA Damage Tolerance Pathways in Human Cells: A Potential Therapeutic Target.
Front Oncol. 2022 Feb 7;11:822500. doi: 10.3389/fonc.2021.822500. eCollection 2021.
9
Highly error-free role of DNA polymerase eta in the replicative bypass of UV-induced pyrimidine dimers in mouse and human cells.
Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18219-24. doi: 10.1073/pnas.0910121106. Epub 2009 Oct 12.
10
Filling gaps in translesion DNA synthesis in human cells.
Mutat Res Genet Toxicol Environ Mutagen. 2018 Dec;836(Pt B):127-142. doi: 10.1016/j.mrgentox.2018.02.004. Epub 2018 Feb 23.

引用本文的文献

1
A human high-fidelity DNA polymerase holoenzyme has a wide range of lesion bypass activities.
Nucleic Acids Res. 2025 Jul 8;53(13). doi: 10.1093/nar/gkaf646.
2
Translesion-synthesis-mediated bypass of DNA lesions occurs predominantly behind replication forks restarted by PrimPol.
Cell Rep. 2025 Mar 25;44(3):115360. doi: 10.1016/j.celrep.2025.115360. Epub 2025 Feb 26.
3
The other side of the coin: protein deubiquitination by Ubiquitin-Specific Protease 1 in cancer progression and therapy.
Future Med Chem. 2025 Feb;17(3):329-345. doi: 10.1080/17568919.2025.2453414. Epub 2025 Jan 17.
5
A human high-fidelity DNA polymerase holoenzyme has a wide range of lesion bypass activities.
bioRxiv. 2024 Oct 17:2024.10.14.618244. doi: 10.1101/2024.10.14.618244.
6
Canonical and Non-Canonical Roles of Human DNA Polymerase η.
Genes (Basel). 2024 Sep 27;15(10):1271. doi: 10.3390/genes15101271.

本文引用的文献

1
Replication Protein A Prohibits Diffusion of the PCNA Sliding Clamp along Single-Stranded DNA.
Biochemistry. 2017 Apr 4;56(13):1824-1835. doi: 10.1021/acs.biochem.6b01213. Epub 2017 Feb 28.
2
Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork.
Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):675-680. doi: 10.1073/pnas.1619748114. Epub 2017 Jan 9.
3
The Effects of Replication Stress on S Phase Histone Management and Epigenetic Memory.
J Mol Biol. 2017 Jun 30;429(13):2011-2029. doi: 10.1016/j.jmb.2016.11.011. Epub 2016 Nov 19.
4
Structure and mechanism of human PrimPol, a DNA polymerase with primase activity.
Sci Adv. 2016 Oct 21;2(10):e1601317. doi: 10.1126/sciadv.1601317. eCollection 2016 Oct.
6
DNA Polymerases Divide the Labor of Genome Replication.
Trends Cell Biol. 2016 Sep;26(9):640-654. doi: 10.1016/j.tcb.2016.04.012. Epub 2016 Jun 1.
7
High-resolution genomic assays provide insight into the division of labor between TLS and HDR in mammalian replication of damaged DNA.
DNA Repair (Amst). 2016 Aug;44:59-67. doi: 10.1016/j.dnarep.2016.05.007. Epub 2016 May 16.
8
The Eukaryotic Replication Machine.
Enzymes. 2016;39:191-229. doi: 10.1016/bs.enz.2016.03.004. Epub 2016 Apr 19.
9
Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides.
Cell Cycle. 2016 Aug 2;15(15):1997-2008. doi: 10.1080/15384101.2016.1191711. Epub 2016 May 26.
10
Replication-Coupled Nucleosome Assembly and Positioning by ATP-Dependent Chromatin-Remodeling Enzymes.
Cell Rep. 2016 Apr 26;15(4):715-723. doi: 10.1016/j.celrep.2016.03.059. Epub 2016 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验