Suppr超能文献

质量控制机制将错误的聚合酶排除在真核生物复制叉之外。

Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork.

作者信息

Schauer Grant D, O'Donnell Michael E

机构信息

Howard Hughes Medical Institute and Rockefeller University, New York, NY 10065.

Howard Hughes Medical Institute and Rockefeller University, New York, NY 10065

出版信息

Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):675-680. doi: 10.1073/pnas.1619748114. Epub 2017 Jan 9.

Abstract

The eukaryotic genome is primarily replicated by two DNA polymerases, Pol ε and Pol δ, that function on the leading and lagging strands, respectively. Previous studies have established recruitment mechanisms whereby Cdc45-Mcm2-7-GINS (CMG) helicase binds Pol ε and tethers it to the leading strand, and PCNA (proliferating cell nuclear antigen) binds tightly to Pol δ and recruits it to the lagging strand. The current report identifies quality control mechanisms that exclude the improper polymerase from a particular strand. We find that the replication factor C (RFC) clamp loader specifically inhibits Pol ε on the lagging strand, and CMG protects Pol ε against RFC inhibition on the leading strand. Previous studies show that Pol δ is slow and distributive with CMG on the leading strand. However, Saccharomyces cerevisiae Pol δ-PCNA is a rapid and processive enzyme, suggesting that CMG may bind and alter Pol δ activity or position it on the lagging strand. Measurements of polymerase binding to CMG demonstrate Pol ε binds CMG with a K value of 12 nM, but Pol δ binding CMG is undetectable. Pol δ, like bacterial replicases, undergoes collision release upon completing replication, and we propose Pol δ-PCNA collides with the slower CMG, and in the absence of a stabilizing Pol δ-CMG interaction, the collision release process is triggered, ejecting Pol δ on the leading strand. Hence, by eviction of incorrect polymerases at the fork, the clamp machinery directs quality control on the lagging strand and CMG enforces quality control on the leading strand.

摘要

真核生物基因组主要由两种DNA聚合酶Pol ε和Pol δ进行复制,它们分别在前导链和后随链上发挥作用。先前的研究已经建立了招募机制,即Cdc45-Mcm2-7-GINS(CMG)解旋酶结合Pol ε并将其拴在前导链上,而增殖细胞核抗原(PCNA)紧密结合Pol δ并将其招募到后随链上。本报告确定了从特定链上排除不适当聚合酶的质量控制机制。我们发现复制因子C(RFC)钳位装载器特异性抑制后随链上的Pol ε,而CMG保护Pol ε免受RFC在前导链上的抑制。先前的研究表明,Pol δ在前导链上与CMG结合时速度慢且分布性差。然而,酿酒酵母Pol δ-PCNA是一种快速且持续合成的酶,这表明CMG可能结合并改变Pol δ的活性或将其定位在后随链上。对聚合酶与CMG结合的测量表明,Pol ε以12 nM的K值结合CMG,但未检测到Pol δ与CMG的结合。与细菌复制酶一样,Pol δ在完成复制后会经历碰撞释放,我们提出Pol δ-PCNA与较慢的CMG发生碰撞,并且在缺乏稳定的Pol δ-CMG相互作用的情况下,触发碰撞释放过程,将Pol δ从前导链上弹出。因此,通过在复制叉处排除不正确的聚合酶,钳位机制在后随链上指导质量控制,而CMG在前导链上实施质量控制。

相似文献

10

引用本文的文献

8
DNA replication machinery: Insights from single-molecule approaches.DNA复制机制:单分子方法的见解
Comput Struct Biotechnol J. 2021 Apr 20;19:2057-2069. doi: 10.1016/j.csbj.2021.04.013. eCollection 2021.
10
Replisome bypass of a protein-based R-loop block by Pif1.Pif1 绕过蛋白基 R 环阻碍物的复制体
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30354-30361. doi: 10.1073/pnas.2020189117. Epub 2020 Nov 16.

本文引用的文献

1
The Eukaryotic Replication Machine.真核生物复制机器
Enzymes. 2016;39:191-229. doi: 10.1016/bs.enz.2016.03.004. Epub 2016 Apr 19.
5
The architecture of a eukaryotic replisome.真核生物复制体的结构。
Nat Struct Mol Biol. 2015 Dec;22(12):976-82. doi: 10.1038/nsmb.3113. Epub 2015 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验