Hamlin Trevor A, Poater Jordi, Fonseca Guerra Célia, Bickelhaupt F Matthias
Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands.
Phys Chem Chem Phys. 2017 Jul 14;19(26):16969-16978. doi: 10.1039/c7cp01908d. Epub 2017 May 12.
We have computationally analyzed a comprehensive series of Watson-Crick and mismatched B-DNA base pairs, in the gas phase and in several solvents, including toluene, chloroform, ammonia, methanol and water, using dispersion-corrected density functional theory and implicit solvation. Our analyses shed light on how the molecular-recognition machinery behind life's genetic code depends on the medium, in order to contribute to our understanding of the possibility or impossibility for life to exist on exoplanetary bodies. Calculations show how a common non-terran environment like ammonia, less polar than water, exhibits stronger hydrogen-bonding affinities, although showing reduced selectivities towards the correct incorporation of Watson-Crick base pairs into the backbone. Thus, we prove the viability of DNA replication in a non-terran environment.
我们使用色散校正密度泛函理论和隐式溶剂化模型,对一系列完整的沃森-克里克碱基对和错配的B-DNA碱基对进行了计算分析,研究环境为气相以及包括甲苯、氯仿、氨、甲醇和水在内的几种溶剂。我们的分析揭示了生命遗传密码背后的分子识别机制如何依赖于介质,以便有助于我们理解系外行星体上生命存在的可能性或不可能性。计算结果表明,像氨这样比水极性小的常见非地球环境,尽管对将沃森-克里克碱基对正确掺入主链的选择性降低,但具有更强的氢键亲和力。因此,我们证明了在非地球环境中DNA复制的可行性。