Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
J Phys Chem B. 2012 Oct 11;116(40):12088-94. doi: 10.1021/jp304260t. Epub 2012 Sep 26.
Single- and double-stranded DNA are increasingly being paired with surfaces and nanoparticles for numerous applications, such as sensing, imaging, and drug delivery. Unlike the majority of DNA structures in bulk that are stabilized by canonical Watson-Crick pairing between Ade-Thy and Gua-Cyt, those adsorbed on surfaces are often stabilized by noncanonical base pairing, quartet formation, and base-surface stacking. Not much is known about these kinds of interactions. To build an understanding of the role of non-Watson-Crick pairing on DNA behavior near surfaces, one requires basic information on DNA base pair stacking and hydrogen-bonding interactions. All-atom molecular simulations of DNA bases in two cases--in bulk water and strongly adsorbed on a graphite surface--are conducted to study the relative strengths of stacking and hydrogen bond interactions for each of the 10 possible combinations of base pairs. The key information obtained from these simulations is the free energy as a function of distance between two bases in a pair. We find that stacking interactions exert the dominant influence on the stability of DNA base pairs in bulk water as expected. The strength of stability for these stacking interactions is found to decrease in the order Gua-Gua > Ade-Gua > Ade-Ade > Gua-Thy > Gua-Cyt > Ade-Thy > Ade-Cyt > Thy-Thy > Cyt-Thy > Cyt-Cyt. On the other hand, mutual interactions of surface-adsorbed base pairs are stabilized mostly by hydrogen-bonding interactions in the order Gua-Cyt > Ade-Gua > Ade-Thy > Ade-Ade > Cyt-Thy > Gua-Gua > Cyt-Cyt > Ade-Cyt > Thy-Thy > Gua-Thy. Interestingly, several non-Watson-Crick base pairings, which are commonly ignored, have similar stabilization free energies due to interbase hydrogen bonding as Watson-Crick pairs. This clearly highlights the importance of non-Watson-Crick base pairing in the development of secondary structures of oligonucleotides near surfaces.
单链和双链 DNA 越来越多地与表面和纳米粒子配对,用于各种应用,例如传感、成像和药物输送。与大多数在体内稳定的 DNA 结构不同,这些结构是通过 Ade-Thy 和 Gua-Cyt 之间的典型 Watson-Crick 配对稳定的,吸附在表面上的 DNA 结构通常通过非典型碱基配对、四联体形成和碱基-表面堆积稳定。对于这些类型的相互作用,我们知之甚少。为了了解非 Watson-Crick 配对在 DNA 表面附近行为中的作用,需要了解 DNA 碱基对堆积和氢键相互作用的基本信息。对两种情况下的 DNA 碱基进行全原子分子模拟——在本体水中和强烈吸附在石墨表面上——以研究 10 种可能碱基对组合中每一种的堆积和氢键相互作用的相对强度。从这些模拟中获得的关键信息是两个碱基对之间的自由能作为距离的函数。我们发现,正如预期的那样,堆积相互作用对本体水中 DNA 碱基对的稳定性具有主导影响。发现这些堆积相互作用的稳定性强度按 Gua-Gua > Ade-Gua > Ade-Ade > Gua-Thy > Gua-Cyt > Ade-Thy > Ade-Cyt > Thy-Thy > Cyt-Thy > Cyt-Cyt 的顺序降低。另一方面,表面吸附碱基对的相互作用主要通过氢键相互作用稳定,其顺序为 Gua-Cyt > Ade-Gua > Ade-Thy > Ade-Ade > Cyt-Thy > Gua-Gua > Cyt-Cyt > Ade-Cyt > Thy-Thy > Gua-Thy。有趣的是,由于碱基间氢键,几种通常被忽略的非 Watson-Crick 碱基配对具有相似的稳定自由能,这清楚地强调了非 Watson-Crick 碱基配对在表面附近寡核苷酸二级结构形成中的重要性。