Suppr超能文献

主持人观点:预测模型:精准肾脏病学的前奏。

Moderator's view: Predictive models: a prelude to precision nephrology.

作者信息

Zoccali Carmine

机构信息

CNR-IFC Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension, Reggio Calabria Unit, Reggio Calabria, Italy.

出版信息

Nephrol Dial Transplant. 2017 May 1;32(5):756-758. doi: 10.1093/ndt/gfx077.

Abstract

Appropriate diagnosis is fundamental in medicine because it sets the basis for the prediction of disease outcome at the single patient level (prognosis) and decisions regarding the most appropriate therapy. However, given the large series of social, clinical and biological factors that determine the likelihood of an individual's future outcome, prognosis only partly depends on diagnosis and aetiology and treatment is not decided solely on the basis of the underlying diagnosis. This issue is crucial in multifactorial diseases like atherosclerosis, where the use of statins has now shifted from 'treating hypercholesterolaemia' to 'treating the risk of adverse cardiovascular events'. Approaches that take due account of prognosis limit the lingering risk of over-diagnosis and maximize the value of prognostic information in the clinical decision process. In the nephrology realm, the application of a well-validated risk equation for kidney failure in Canada led to a 35% reduction in new referrals. Prognostic models based on simple clinical data extractable from clinical files have recently been developed to predict all-cause and cardiovascular mortality in end-stage kidney disease patients. However, research on predictive models in renal diseases remains suboptimal and non-accounting for competing events and measurement errors, and a lack of calibration analyses and external validation are common fallacies in currently available studies. More focus on this blossoming research area is desirable. The nephrology community may now start to apply the best validated risk scores and further test their potential usefulness in chronic kidney disease patients in diverse clinical situations and geographical areas.

摘要

准确的诊断在医学中至关重要,因为它为预测单个患者的疾病结局(预后)以及做出关于最合适治疗的决策奠定了基础。然而,鉴于决定个体未来结局可能性的一系列社会、临床和生物学因素众多,预后仅部分取决于诊断和病因,治疗也并非仅基于潜在诊断来决定。这个问题在动脉粥样硬化等多因素疾病中至关重要,在这类疾病中,他汀类药物的使用现已从“治疗高胆固醇血症”转变为“治疗心血管不良事件风险”。充分考虑预后的方法可限制过度诊断的持续风险,并在临床决策过程中最大化预后信息的价值。在肾脏病领域,加拿大应用经过充分验证的肾衰竭风险方程使新转诊病例减少了35%。最近已开发出基于可从临床病历中提取的简单临床数据的预后模型,以预测终末期肾病患者的全因死亡率和心血管死亡率。然而,目前关于肾脏疾病预测模型的研究仍不理想,存在未考虑竞争事件和测量误差的问题,并且缺乏校准分析和外部验证是现有研究中常见的错误。需要更多地关注这个蓬勃发展的研究领域。肾脏病学界现在可能开始应用经过最佳验证的风险评分,并进一步测试它们在不同临床情况和地理区域的慢性肾脏病患者中的潜在实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验