Mai Sui, Wei Chin-Chuan, Gu Li-Sha, Tian Fu-Cong, Arola Dwayne D, Chen Ji-Hua, Jiao Yang, Pashley David H, Niu Li-Na, Tay Franklin R
Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
Department of Chemistry, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA.
Acta Biomater. 2017 Jul 15;57:435-448. doi: 10.1016/j.actbio.2017.05.017. Epub 2017 May 9.
Limitations associated with wet-bonding led to the recent development of a selective demineralization strategy in which dentin was etched with a reduced concentration of phosphoric acid to create exclusive extrafibrillar demineralization of the collagen matrix. However, the use of acidic conditioners removes calcium via diffusion of very small hydronium ions into the intrafibrillar collagen water compartments. This defeats the purpose of limiting the conditioner to the extrafibrillar space to create a collagen matrix containing only intrafibrillar minerals to prevent collapse of the collagen matrix. The present work examined the use of polymeric chelators (the sodium salt of polyacrylic acid) of different molecular weights to selectively demineralize extrafibrillar dentin. These polymeric chelators exhibit different affinities for calcium ions (isothermal titration calorimetry), penetrated intrafibrillar dentin collagen to different extents based on their molecular sizes (modified size-exclusion chromatography), and preserve the dynamic mechanical properties of mineralized dentin more favorably compared with completely demineralized phosphoric acid-etched dentin (nanoscopical dynamic mechanical analysis). Scanning and transmission electron microscopy provided evidence for retention of intrafibrillar minerals in dentin surfaces conditioned with polymeric chelators. Microtensile bond strengths to wet-bonded and dry-bonded dentin conditioned with these polymeric chelators showed that the use of sodium salts of polyacrylic acid for chelating dentin prior to bonding did not result in significant decline in resin-dentin bond strength. Taken together, the findings led to the conclusion that a chelate-and-rinse conditioning technique based on extrafibrillar collagen demineralization bridges the gap between wet and dry dentin bonding.
The chelate-and-rinse dental adhesive bonding concept differentiates from previous research in that it is based on the size-exclusion characteristics of fibrillar collagen; molecules larger than 40kDa are prevented from accessing the intrafibrillar water compartments of the collagen fibrils. Using this chelate-and-rinse extrafibrillar calcium chelation concept, collagen fibrils with retained intrafibrillar minerals will not collapse upon air-drying. This enables adhesive infiltration into the mineral-depleted extrafibrillar spaces without relying on wet-bonding. By bridging the gap between wet and dry dentine bonding, the chelate-and-rinse concept introduces additional insight to the field by preventing exposure of endogenous proteases via preservation of the intrafibrillar minerals within a collagen matrix. If successfully validated, this should help prevent degradation of resin-dentine bonds by collagenolytic enzymes.
与湿粘结相关的局限性导致了一种选择性脱矿策略的近期发展,在该策略中,用浓度降低的磷酸蚀刻牙本质,以实现胶原基质仅在纤维间进行脱矿。然而,使用酸性调节剂会通过非常小的水合氢离子扩散到纤维内胶原水隔室中而去除钙。这违背了将调节剂限制在纤维间空间以创建仅含纤维内矿物质的胶原基质以防止胶原基质塌陷的目的。本研究考察了不同分子量的聚合螯合剂(聚丙烯酸钠盐)用于选择性地使纤维间牙本质脱矿的情况。这些聚合螯合剂对钙离子表现出不同的亲和力(等温滴定量热法),根据其分子大小在不同程度上渗透到纤维内牙本质胶原中(改进的尺寸排阻色谱法),并且与完全脱矿的磷酸蚀刻牙本质相比,更有利地保留了矿化牙本质的动态力学性能(纳米级动态力学分析)。扫描电子显微镜和透射电子显微镜提供了证据,表明在用聚合螯合剂处理的牙本质表面保留了纤维内矿物质。对用这些聚合螯合剂处理的湿粘结和干粘结牙本质的微拉伸粘结强度表明,在粘结前使用聚丙烯酸钠盐螯合牙本质不会导致树脂 - 牙本质粘结强度显著下降。综上所述,这些发现得出结论,基于纤维间胶原脱矿的螯合冲洗处理技术弥合了湿粘结和干粘结之间的差距。
螯合冲洗牙科粘结概念与先前的研究不同,因为它基于纤维状胶原的尺寸排阻特性;大于40kDa的分子无法进入胶原纤维的纤维内水隔室。使用这种螯合冲洗纤维间钙螯合概念,保留了纤维内矿物质的胶原纤维在风干时不会塌陷。这使得粘合剂能够渗透到矿物质耗尽的纤维间空间,而无需依赖湿粘结。通过弥合湿粘结和干粘结之间的差距,螯合冲洗概念通过在胶原基质内保留纤维内矿物质来防止内源性蛋白酶暴露,从而为该领域带来了新的见解。如果成功验证,这应该有助于防止胶原酶降解树脂 - 牙本质粘结。