School of Chemical Engineering, University of Queensland, St. Lucia, QLD 4072, Australia; Department of Chemical Engineering, Mahidol University, Nakhon Pathom 73170, Thailand.
School of Engineering and Information Technology, Charles Darwin University, Darwin, NT 0909, Australia.
J Colloid Interface Sci. 2017 Oct 1;503:28-38. doi: 10.1016/j.jcis.2017.05.004. Epub 2017 May 4.
We have refined and improved the computational efficiency of the TriPOD technique, used to determine the accessible characteristics of porous solids with a known configuration of solid atoms. Instead of placing a probe molecule randomly, as described in the original version of the TriPOD method (Herrera et al., 2011), we implemented a scheme for dividing the porous solid into 3D-grids and computing the solid-fluid potential energies at these grid points. We illustrate the potential of this technique in determining the total pore volume, the surface area and the pore size distribution of various molecular models of porous carbons, ranging from simple pore models to a more complex simulated porous carbon model; the latter is constructed from a canonical Monte Carlo simulation of carbon microcrystallites of various sizes.
我们改进和提高了 TriPOD 技术的计算效率,该技术用于确定具有已知固体原子构型的多孔固体的可及特性。我们没有像 TriPOD 方法的原始版本(Herrera 等人,2011 年)中那样随机放置探针分子,而是实施了一种将多孔固体划分为 3D 网格并在这些网格点上计算固-液势能的方案。我们说明了该技术在确定各种多孔碳分子模型的总孔体积、表面积和孔径分布方面的潜力,这些模型的范围从简单的孔模型到更复杂的模拟多孔碳模型;后者是通过对不同大小的碳微晶进行规范的蒙特卡罗模拟构建的。