Department of Animal and Food Sciences, University of Kentucky, Lexington 40546.
Research Support Office, Royal Veterinary College, University of London, NW1 0TU, United Kingdom.
J Dairy Sci. 2017 Jul;100(7):5664-5674. doi: 10.3168/jds.2016-11526. Epub 2017 May 10.
The objective of this study was to use automated activity, lying, and rumination monitors to characterize prepartum behavior and predict calving in dairy cattle. Data were collected from 20 primiparous and 33 multiparous Holstein dairy cattle from September 2011 to May 2013 at the University of Kentucky Coldstream Dairy. The HR Tag (SCR Engineers Ltd., Netanya, Israel) automatically collected neck activity and rumination data in 2-h increments. The IceQube (IceRobotics Ltd., South Queensferry, United Kingdom) automatically collected number of steps, lying time, standing time, number of transitions from standing to lying (lying bouts), and total motion, summed in 15-min increments. IceQube data were summed in 2-h increments to match HR Tag data. All behavioral data were collected for 14 d before the predicted calving date. Retrospective data analysis was performed using mixed linear models to examine behavioral changes by day in the 14 d before calving. Bihourly behavioral differences from baseline values over the 14 d before calving were also evaluated using mixed linear models. Changes in daily rumination time, total motion, lying time, and lying bouts occurred in the 14 d before calving. In the bihourly analysis, extreme values for all behaviors occurred in the final 24 h, indicating that the monitored behaviors may be useful in calving prediction. To determine whether technologies were useful at predicting calving, random forest, linear discriminant analysis, and neural network machine-learning techniques were constructed and implemented using R version 3.1.0 (R Foundation for Statistical Computing, Vienna, Austria). These methods were used on variables from each technology and all combined variables from both technologies. A neural network analysis that combined variables from both technologies at the daily level yielded 100.0% sensitivity and 86.8% specificity. A neural network analysis that combined variables from both technologies in bihourly increments was used to identify 2-h periods in the 8 h before calving with 82.8% sensitivity and 80.4% specificity. Changes in behavior and machine-learning alerts indicate that commercially marketed behavioral monitors may have calving prediction potential.
本研究旨在使用自动化活动、躺卧和反刍监测器来描述产前行为并预测奶牛的产犊时间。数据于 2011 年 9 月至 2013 年 5 月在肯塔基大学柯德斯特里姆奶牛场收集,涉及 20 头初产荷斯坦奶牛和 33 头经产荷斯坦奶牛。HR Tag(SCR Engineers Ltd.,以色列内坦亚)以 2 小时为增量自动收集颈部活动和反刍数据。IceQube(IceRobotics Ltd.,英国南昆斯费里)自动收集步数、躺卧时间、站立时间、从站立到躺卧的次数(躺卧发作)和总运动,以 15 分钟为增量进行汇总。IceQube 数据以 2 小时为增量汇总,以匹配 HR Tag 数据。所有行为数据均在预测产犊日期前 14 天内收集。使用混合线性模型进行回顾性数据分析,以检查产犊前 14 天内的每日行为变化。还使用混合线性模型评估产犊前 14 天内的每两小时行为与基线值的差异。在产犊前 14 天内,每日反刍时间、总运动、躺卧时间和躺卧发作发生变化。在每两小时的分析中,所有行为的极值都出现在最后 24 小时内,这表明所监测的行为可能有助于产犊预测。为了确定技术是否有助于预测产犊,使用 R 版本 3.1.0(奥地利维也纳统计计算基金会)构建和实施了随机森林、线性判别分析和神经网络机器学习技术。这些方法用于来自每个技术的变量和来自两个技术的所有组合变量。将来自两种技术的变量在每日水平上进行组合的神经网络分析产生了 100.0%的灵敏度和 86.8%的特异性。在每两小时的增量中组合来自两种技术的变量的神经网络分析用于识别产犊前 8 小时内的 2 小时时间段,其灵敏度为 82.8%,特异性为 80.4%。行为变化和机器学习警报表明,商业化的行为监测器可能具有产犊预测潜力。