IEEE Trans Vis Comput Graph. 2018 Jun;24(6):1983-1996. doi: 10.1109/TVCG.2017.2704078. Epub 2017 May 12.
We introduce the Hierarchical Poisson Disk Sampling Multi-Triangulation (HPDS-MT) of surfaces, a novel structure that combines the power of multi-triangulation (MT) with the benefits of Hierarchical Poisson Disk Sampling (HPDS). MT is a general framework for representing surfaces through variable resolution triangle meshes, while HPDS is a well-spaced random distribution with blue noise characteristics. The distinguishing feature of the HPDS-MT is its ability to extract adaptive meshes whose triangles are guaranteed to have good shape quality. The key idea behind the HPDS-MT is a preprocessed hierarchy of points, which is used in the construction of a MT via incremental simplification. In addition to proving theoretical properties on the shape quality of the triangle meshes extracted by the HPDS-MT, we provide an implementation that computes the HPDS-MT with high accuracy. Our results confirm the theoretical guarantees and outperform similar methods. We also prove that the Hausdorff distance between the original surface and any (extracted) adaptive mesh is bounded by the sampling distribution of the radii of Poisson-disks over the surface. Finally, we illustrate the advantages of the HPDS-MT in some typical problems of geometry processing.
我们引入了分层泊松磁盘采样多三角剖分(HPDS-MT)的曲面,这是一种将多三角剖分(MT)的功能与分层泊松磁盘采样(HPDS)的优势相结合的新型结构。MT 是通过可变分辨率三角网格来表示曲面的通用框架,而 HPDS 是一种具有蓝噪声特性的均匀间隔的随机分布。HPDS-MT 的突出特点是它能够提取自适应网格,其中三角形保证具有良好的形状质量。HPDS-MT 的关键思想是一个预处理的点层次结构,它被用于通过增量简化来构建 MT。除了证明 HPDS-MT 提取的三角网格的形状质量的理论性质外,我们还提供了一个具有高精度的 HPDS-MT 计算的实现。我们的结果证实了理论保证,并优于类似的方法。我们还证明了原始曲面和任何(提取的)自适应网格之间的 Hausdorff 距离受泊松圆盘半径的采样分布限制。最后,我们在一些典型的几何处理问题中说明了 HPDS-MT 的优势。