Dave Vijay, Manchanda Rohit
* Biosciences and Bioengineering Department, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India.
† Biomedical Engineering Department, Government Polytechnic, Gandhinagar 382026, Gujarat, India.
J Bioinform Comput Biol. 2017 Jun;15(3):1750011. doi: 10.1142/S0219720017500111. Epub 2017 Apr 20.
Many cellular events including electrical activity and muscle contraction are regulated and coordinated by intracellular [Formula: see text] concentration ([[Formula: see text]][Formula: see text]. In detrusor smooth muscle (DSM) cells, [[Formula: see text]] is normally maintained at very low levels and rises transiently during signalling processes as a result of (i) influx from the extracellular space (mainly via L-type and T-type [Formula: see text] channels) and (ii) [Formula: see text] release from sarcoplasmic reticulum (SR) into the cytoplasm. Intracellular [Formula: see text] buffers, both fixed and diffusible, play a vital role in shaping the radial distribution of free [Formula: see text]. Our aim, in the work presented here, is to develop a mathematical model of [Formula: see text] buffering and diffusion and to generate [Formula: see text] transient in guinea pig DSM cells. The [Formula: see text] transient is generated using inward [Formula: see text] current that arises following voltage clamp and mediated by L-type and T-type [Formula: see text] channels. [Formula: see text] transient is obtained for different radial locations (or shells) of the DSM cytosol. This modeling study explores the levels of [[Formula: see text]] achieved near the plasma membrane and in deeper locations. The [Formula: see text] transient generated in our model shows a high degree of similarity with experimental findings in terms of amplitude, duration and half-decay time. A number of different buffer properties such as concentration and mobility are tested for their effect on amplitude and shape of [Formula: see text] transient. The presence of fast buffer concentration in the cytosol markedly delays the rise of [[Formula: see text]] in the core of the cell. Increase in the mobility of fast buffer slightly speeds up the redistribution of [Formula: see text]. To explore the model further, the role of plasma membrane [Formula: see text]-ATPase (PMCA) pump, sarcoplasmic/endoplasmic reticulum [Formula: see text]-ATPase (SERCA) pump and sodium calcium exchanger (NCX) on [Formula: see text] transient is studied and it is suggested that NCX may be of primary importance for the immediate lowering of [[Formula: see text]] during the falling phase of a [Formula: see text] transient in DSM cells.
许多细胞活动,包括电活动和肌肉收缩,都由细胞内钙离子浓度([Ca²⁺]i)进行调节和协调。在逼尿肌平滑肌(DSM)细胞中,[Ca²⁺]i通常维持在非常低的水平,并在信号传导过程中由于以下原因而短暂升高:(i)从细胞外空间流入(主要通过L型和T型Ca²⁺通道),以及(ii)钙离子从肌浆网(SR)释放到细胞质中。细胞内的钙离子缓冲剂,包括固定的和可扩散的,在塑造游离钙离子的径向分布中起着至关重要的作用。我们在此处展示的工作中的目标是建立一个钙离子缓冲和扩散的数学模型,并在豚鼠DSM细胞中产生钙离子瞬变。钙离子瞬变是通过电压钳制后由L型和T型Ca²⁺通道介导产生的内向钙离子电流来产生的。在DSM细胞质的不同径向位置(或壳层)获得钙离子瞬变。这项建模研究探索了在质膜附近和更深位置达到的[Ca²⁺]i水平。我们模型中产生的钙离子瞬变在幅度、持续时间和半衰期方面与实验结果显示出高度相似性。测试了许多不同的缓冲特性,如浓度和迁移率,以研究它们对钙离子瞬变幅度和形状的影响。细胞质中快速缓冲剂浓度的存在显著延迟了细胞核心中[Ca²⁺]i的升高。快速缓冲剂迁移率的增加略微加速了钙离子的重新分布。为了进一步探索该模型,研究了质膜Ca²⁺-ATP酶(PMCA)泵、肌浆网/内质网Ca²⁺-ATP酶(SERCA)泵和钠钙交换器(NCX)对钙离子瞬变的作用,并表明NCX可能对于DSM细胞中钙离子瞬变下降阶段[Ca²⁺]i的立即降低至关重要。