Suppr超能文献

一个用于确定抗菌药物耐药性干预措施影响的拟议分析框架。

A proposed analytic framework for determining the impact of an antimicrobial resistance intervention.

作者信息

Grohn Yrjo T, Carson Carolee, Lanzas Cristina, Pullum Laura, Stanhope Michael, Volkova Victoriya

机构信息

Population Medicine and Diagnostic Sciences,College of Veterinary Medicine, Cornell University,Ithaca, New York,USA.

Centre for Foodborne, Environmental and Zoonotic Infectious Diseases,Public Health Agency of Canada,Ottawa, Ontario,Canada.

出版信息

Anim Health Res Rev. 2017 Jun;18(1):1-25. doi: 10.1017/S1466252317000019. Epub 2017 May 16.

Abstract

Antimicrobial use (AMU) is increasingly threatened by antimicrobial resistance (AMR). The FDA is implementing risk mitigation measures promoting prudent AMU in food animals. Their evaluation is crucial: the AMU/AMR relationship is complex; a suitable framework to analyze interventions is unavailable. Systems science analysis, depicting variables and their associations, would help integrate mathematics/epidemiology to evaluate the relationship. This would identify informative data and models to evaluate interventions. This National Institute for Mathematical and Biological Synthesis AMR Working Group's report proposes a system framework to address the methodological gap linking livestock AMU and AMR in foodborne bacteria. It could evaluate how AMU (and interventions) impact AMR. We will evaluate pharmacokinetic/dynamic modeling techniques for projecting AMR selection pressure on enteric bacteria. We study two methods to model phenotypic AMR changes in bacteria in the food supply and evolutionary genotypic analyses determining molecular changes in phenotypic AMR. Systems science analysis integrates the methods, showing how resistance in the food supply is explained by AMU and concurrent factors influencing the whole system. This process is updated with data and techniques to improve prediction and inform improvements for AMU/AMR surveillance. Our proposed framework reflects both the AMR system's complexity, and desire for simple, reliable conclusions.

摘要

抗菌药物的使用(AMU)正日益受到抗菌药物耐药性(AMR)的威胁。美国食品药品监督管理局(FDA)正在实施风险缓解措施,以促进在食用动物中谨慎使用抗菌药物。对这些措施的评估至关重要:AMU与AMR之间的关系很复杂;目前尚无合适的框架来分析干预措施。系统科学分析能够描绘变量及其关联,这将有助于整合数学/流行病学知识来评估这种关系。这将识别出用于评估干预措施的信息丰富的数据和模型。美国国家数学和生物合成研究所抗菌药物耐药性工作组的这份报告提出了一个系统框架,以解决将家畜AMU与食源细菌中的AMR联系起来的方法学差距。它可以评估AMU(以及干预措施)如何影响AMR。我们将评估药代动力学/药效学建模技术,以预测肠道细菌上的AMR选择压力。我们研究两种方法来模拟食品供应中细菌的表型AMR变化,以及通过进化基因型分析来确定表型AMR中的分子变化。系统科学分析整合了这些方法,展示了食品供应中的耐药性是如何由AMU以及影响整个系统的并发因素来解释的。这个过程会根据数据和技术进行更新,以改进预测并为AMU/AMR监测的改进提供信息。我们提出的框架既反映了AMR系统的复杂性,也体现了对简单、可靠结论的需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验