Schucht P, Seidel K, Jilch A, Beck J, Raabe A
Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland.
Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland.
Neurochirurgie. 2017 Jun;63(3):175-180. doi: 10.1016/j.neuchi.2017.01.007. Epub 2017 May 13.
Monopolar mapping of motor function differs from the most commonly used method of intraoperative mapping, i.e. bipolar direct electrical stimulation at 50-60Hz (Penfield technique mapping). Most importantly, the monopolar probe emits a radial, homogenous electrical field different to the more focused inter-tip bipolar electrical field. Most users combine monopolar stimulation with the short train technique, also called high frequency stimulation, or train-of-five techniques. It consists of trains of four to nine monopolar rectangular electrical pulses of 200-500μs pulse length with an inter stimulus interval of 2-4msec. High frequency short train stimulation triggers a time-locked motor-evoked potential response, which has a defined latency and an easily quantifiable amplitude. In this way, motor thresholds might be used to evaluate a current-to-distance relation. The homogeneous electrical field and the current-to-distance approximation provide the surgeon with an estimate of the remaining distance to the corticospinal tract, enabling the surgeon to adjust the speed of resection as the corticospinal tract is approached. Furthermore, this stimulation paradigm is associated with a lower incidence of intraoperative seizures, allowing continuous stimulation. Hence, monopolar mapping is increasingly used as part of a strategy of continuous dynamic mapping: ergonomically integrated into the surgeon's tools, the monopolar probe reliably provides continuous/uninterrupted feedback on motor function. As part of this strategy, motor mapping is not any longer a time consuming interruption of resection but rather a radar-like, real-time information system on the spatial relationship of the current resection site to eloquent motor structures.
运动功能的单极映射与术中映射最常用的方法不同,即50 - 60Hz的双极直接电刺激(彭菲尔德技术映射)。最重要的是,单极探头发出的是径向均匀电场,这与更聚焦的双极电极尖端之间的电场不同。大多数使用者将单极刺激与短串刺激技术(也称为高频刺激或五联刺激技术)相结合。它由四到九个单极矩形电脉冲组成,脉冲长度为200 - 500μs,刺激间隔为2 - 4毫秒。高频短串刺激会触发一个时间锁定的运动诱发电位反应,该反应具有确定的潜伏期和易于量化的幅度。通过这种方式,运动阈值可用于评估电流与距离的关系。均匀的电场和电流与距离的近似关系为外科医生提供了到皮质脊髓束剩余距离的估计,使外科医生能够在接近皮质脊髓束时调整切除速度。此外,这种刺激模式与术中癫痫发作的发生率较低相关,允许进行连续刺激。因此,单极映射越来越多地被用作连续动态映射策略的一部分:单极探头在人体工程学上集成到外科医生的工具中,可靠地提供关于运动功能的连续/不间断反馈。作为该策略的一部分,运动映射不再是切除过程中耗时的中断,而是一个类似雷达的实时信息系统,用于显示当前切除部位与明确运动结构的空间关系。