Halder Antarip, Roy Rohit, Bhattacharyya Dhananjay, Mitra Abhijit
Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad, India.
Computational Science Division, Saha Institute of Nuclear Physics (SINP), Kolkata, India.
Biophys J. 2017 Jul 25;113(2):277-289. doi: 10.1016/j.bpj.2017.04.029. Epub 2017 May 12.
Reverse Watson-Crick G:C basepairs (G:C W:W Trans) occur frequently in different functional RNAs. This is one of the few basepairs whose gas-phase-optimized isolated geometry is inconsistent with the corresponding experimental geometry. Several earlier studies indicate that through post-transcriptional modification, direct protonation, or coordination with Mg, accumulation of positive charge near N7 of guanine can stabilize the experimental geometry. Interestingly, recent studies reveal significant variation in the position of putatively bound Mg. This, in conjunction with recently raised doubts regarding some of the Mg assignments near the imino nitrogen of guanine, is suggestive of the existence of multiple Mg binding modes for this basepair. Our detailed investigation of Mg-bound G:C W:W Trans pairs occurring in high-resolution RNA crystal structures shows that they are found in 14 different contexts, eight of which display Mg binding at the Hoogsteen edge of guanine. Further examination of occurrences in these eight contexts led to the characterization of three different Mg binding modes: 1) direct binding via N7 coordination, 2) direct binding via O6 coordination, and 3) binding via hydrogen-bonding interaction with the first-shell water molecules. In the crystal structures, the latter two modes are associated with a buckled and propeller-twisted geometry of the basepair. Interestingly, respective optimized geometries of these different Mg binding modes (optimized using six different DFT functionals) are consistent with their corresponding experimental geometries. Subsequent interaction energy calculations at the MP2 level, and decomposition of its components, suggest that for G:C W:W Trans , Mg binding can fine tune the basepair geometries without compromising with their stability. Our results, therefore, underline the importance of the mode of binding of Mg ions in shaping RNA structure, folding and function.
反向沃森-克里克G:C碱基对(G:C W:W Trans)在不同的功能性RNA中频繁出现。这是少数几种气相优化的孤立几何结构与相应实验几何结构不一致的碱基对之一。早期的几项研究表明,通过转录后修饰、直接质子化或与镁配位,鸟嘌呤N7附近正电荷的积累可以稳定实验几何结构。有趣的是,最近的研究揭示了假定结合的镁的位置存在显著差异。这与最近对鸟嘌呤亚氨基氮附近一些镁的归属提出的疑问相结合,暗示了该碱基对存在多种镁结合模式。我们对高分辨率RNA晶体结构中镁结合的G:C W:W Trans对的详细研究表明,它们出现在14种不同的环境中,其中8种在鸟嘌呤的Hoogsteen边缘显示出镁结合。对这8种环境中出现情况的进一步研究导致了三种不同镁结合模式的表征:1)通过N7配位直接结合,2)通过O6配位直接结合,3)通过与第一壳层水分子的氢键相互作用结合。在晶体结构中,后两种模式与碱基对的弯曲和螺旋扭曲几何结构相关。有趣的是,这些不同镁结合模式的各自优化几何结构(使用六种不同的密度泛函理论(DFT)函数进行优化)与其相应的实验几何结构一致。随后在MP2水平进行的相互作用能计算及其组分分解表明,对于G:C W:W Trans,镁结合可以微调碱基对几何结构而不损害其稳定性。因此,我们的结果强调了镁离子结合模式在塑造RNA结构、折叠和功能方面的重要性。