Halder Antarip, Bhattacharya Sohini, Datta Ayan, Bhattacharyya Dhananjay, Mitra Abhijit
Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India.
Phys Chem Chem Phys. 2015 Oct 21;17(39):26249-63. doi: 10.1039/c5cp04894j. Epub 2015 Sep 18.
The roles of protonated nucleobases in stabilizing different structural motifs and in facilitating catalytic functions of RNA are well known. Among different polar sites of all the nucleobases, N7 of guanine has the highest protonation propensity at physiological pH. However, unlike other easily protonable sites such as N1 and N3 of adenine or N3 of cytosine, N7 protonation of guanine does not lead to the stabilization of base pairs involving its protonated Hoogsteen edge. It also does not facilitate its participation in any acid-base catalysis process. To explore the possible roles of N7 protonated guanine, we have studied its base pairing potentials involving WatsonCrick and sugar edges, which undergo major charge redistribution upon N7 protonation. We have carried out quantum chemical geometry optimization at the M05-2X/6-311G+(2d,2p) level, followed by interaction energy calculation at the MP2/aug-cc-pVDZ level, along with the analysis of the context of occurrence for selected base pairs involving the sugar edge or the WatsonCrick edge of guanine within a non-redundant set of 167 RNA crystal structures. Our results suggest that, four base pairs - G:C W:W trans, G:rC W:S cis, G:G W:H cis and G:G S:H trans may involve N7 protonated guanine. These base pairs deviate significantly from their respective experimental geometries upon QM optimization, but they retain their experimental geometries if guanine N7 protonation is considered during optimization. Our study also reveals the role of guanine N7 protonation (i) in stabilizing important RNA structural motifs, (ii) in providing a framework for designing pH driven molecular motors and (iii) in providing an alternative strategy to mimic the effect of post-transcriptional changes.
质子化核碱基在稳定不同结构基序以及促进RNA催化功能方面的作用是众所周知的。在所有核碱基的不同极性位点中,鸟嘌呤的N7在生理pH下具有最高的质子化倾向。然而,与腺嘌呤的N1和N3或胞嘧啶的N3等其他易于质子化的位点不同,鸟嘌呤的N7质子化不会导致涉及其质子化的Hoogsteen边缘的碱基对稳定。它也不促进其参与任何酸碱催化过程。为了探索N7质子化鸟嘌呤的可能作用,我们研究了其涉及Watson-Crick和糖边缘的碱基配对潜力,这些边缘在N7质子化时会发生主要的电荷重新分布。我们在M05-2X/6-311G+(2d,2p)水平上进行了量子化学几何优化,随后在MP2/aug-cc-pVDZ水平上进行了相互作用能计算,并分析了167个RNA晶体结构的非冗余集中涉及鸟嘌呤糖边缘或Watson-Crick边缘的选定碱基对的出现情况。我们的结果表明,四个碱基对——G:C W:W反式、G:rC W:S顺式、G:G W:H顺式和G:G S:H反式可能涉及N7质子化鸟嘌呤。这些碱基对在量子力学优化后与其各自的实验几何结构有显著偏差,但如果在优化过程中考虑鸟嘌呤N7质子化,它们会保留其实验几何结构。我们的研究还揭示了鸟嘌呤N7质子化的作用:(i)稳定重要的RNA结构基序;(ii)为设计pH驱动的分子马达提供框架;(iii)提供一种替代策略来模拟转录后变化的影响。