Naya H, Peñagaricano F, Urioste J I
Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay.
Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay.
J Anim Breed Genet. 2017 Jun;134(3):202-212. doi: 10.1111/jbg.12266.
Female fertility traits are key components of the profitability of beef cattle production. However, these traits are difficult and expensive to measure, particularly under extensive pastoral conditions, and consequently, fertility records are in general scarce and somehow incomplete. Moreover, fertility traits are usually dominated by the effects of herd-year environment, and it is generally assumed that relatively small margins are kept for genetic improvement. New ways of modelling genetic variation in these traits are needed. Inspired in the methodological developments made by Prof. Daniel Gianola and co-workers, we assayed linear (Gaussian), Poisson, probit (threshold), censored Poisson and censored Gaussian models to three different kinds of endpoints, namely calving success (CS), number of days from first calving (CD) and number of failed oestrus (FE). For models involving FE and CS, non-linear models overperformed their linear counterparts. For models derived from CD, linear versions displayed better adjustment than the non-linear counterparts. Non-linear models showed consistently higher estimates of heritability and repeatability in all cases (h < 0.08 and r < 0.13, for linear models; h > 0.23 and r > 0.24, for non-linear models). While additive and permanent environment effects showed highly favourable correlations between all models (>0.789), consistency in selecting the 10% best sires showed important differences, mainly amongst the considered endpoints (FE, CS and CD). In consequence, endpoints should be considered as modelling different underlying genetic effects, with linear models more appropriate to describe CD and non-linear models better for FE and CS.
母牛繁殖性状是肉牛生产盈利能力的关键组成部分。然而,这些性状测量起来困难且成本高昂,尤其是在粗放的牧区条件下,因此繁殖记录总体上稀少且在某种程度上不完整。此外,繁殖性状通常受牛群年份环境影响较大,一般认为用于遗传改良的余地相对较小。需要新的方法来模拟这些性状的遗传变异。受丹尼尔·贾诺拉教授及其同事所取得的方法学进展的启发,我们对线性(高斯)、泊松、概率单位(阈值)、删失泊松和删失高斯模型针对三种不同的终点进行了分析,即产犊成功(CS)、首次产犊后的天数(CD)和发情失败次数(FE)。对于涉及FE和CS的模型,非线性模型的表现优于其线性对应模型。对于源自CD的模型,线性版本的拟合效果优于非线性对应模型。在所有情况下,非线性模型的遗传力和重复性估计值始终更高(线性模型的h < 0.08且r < 0.13;非线性模型的h > 0.23且r > 0.24)。虽然所有模型中加性效应和永久环境效应之间的相关性都非常高(>0.789),但在选择10%最佳种公牛时的一致性存在重要差异,主要体现在所考虑的终点(FE、CS和CD)之间。因此,应将终点视为模拟不同的潜在遗传效应,线性模型更适合描述CD,而非线性模型更适合描述FE和CS。