Suppr超能文献

碲掺杂 Bi 纳米粒子的胶体合成:低温电荷输运和热电性能。

Colloidal Synthesis of Te-Doped Bi Nanoparticles: Low-Temperature Charge Transport and Thermoelectric Properties.

机构信息

School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea.

Thermoelectric Conversion Research Center, Korea Electrotechnology Research Institute (KERI) , Changwon 51543, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2017 Jun 7;9(22):19143-19151. doi: 10.1021/acsami.7b04404. Epub 2017 May 25.

Abstract

Electronically doped nanoparticles formed by incorporation of impurities have been of great interest because of their controllable electrical properties. However, the development of a strategy for n-type or p-type doping on sub-10 nm-sized nanoparticles under the quantum confinement regime is very challenging using conventional processes, owing to the difficulty in synthesis. Herein, we report the colloidal chemical synthesis of sub-10 nm-sized tellurium (Te)-doped Bismuth (Bi) nanoparticles with precisely controlled Te content from 0 to 5% and systematically investigate their low-temperature charge transport and thermoelectric properties. Microstructural characterization of nanoparticles demonstrates that Te ions are successfully incorporated into Bi nanoparticles rather than remaining on the nanoparticle surfaces. Low-temperature Hall measurement results of the hot-pressed Te-doped Bi-nanostructured materials, with grain sizes ranging from 30 to 60 nm, show that the charge transport properties are governed by the doping content and the related impurity and nanoscale grain boundary scatterings. Furthermore, the low-temperature thermoelectric properties reveal that the electrical conductivity and Seebeck coefficient expectedly change with the Te content, whereas the thermal conductivity is significantly reduced by Te doping because of phonon scattering at the sites arising from impurities and nanoscale grain boundaries. Accordingly, the 1% Te-doped Bi sample exhibits a higher figure-of-merit ZT by ∼10% than that of the undoped sample. The synthetic strategy demonstrated in this study offers the possibility of electronic doping of various quantum-confined nanoparticles for diverse applications.

摘要

通过掺入杂质形成的电子掺杂纳米粒子因其可控的电学性质而受到极大关注。然而,在量子限制 regime 下,使用传统工艺在亚 10nm 尺寸的纳米粒子上开发 n 型或 p 型掺杂的策略非常具有挑战性,这是由于合成的困难。在此,我们报告了亚 10nm 尺寸的碲(Te)掺杂铋(Bi)纳米粒子的胶体化学合成,其 Te 含量可精确控制在 0 至 5%,并系统地研究了它们的低温电荷输运和热电性能。纳米粒子的微观结构表征表明,Te 离子成功地掺入到 Bi 纳米粒子中,而不是留在纳米粒子表面。热压 Te 掺杂 Bi 纳米结构材料的低温 Hall 测量结果表明,晶粒尺寸在 30 至 60nm 之间,电荷输运性质由掺杂含量以及相关的杂质和纳米级晶界散射决定。此外,低温热电性能表明,电导率和 Seebeck 系数随着 Te 含量的变化而预期变化,而热导率由于杂质和纳米级晶界处的声子散射而显著降低。因此,1% Te 掺杂的 Bi 样品的 ZT 比未掺杂样品高约 10%。本研究中展示的合成策略为各种量子限制纳米粒子的电子掺杂提供了可能,可应用于各种领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验