Suppr超能文献

Diamide alters membrane Na+ and K+ conductances and increases internal resistance in the isolated rat lens.

作者信息

Duncan G, Gandolfi S A, Maraini G

机构信息

School of Biological Sciences, University of East Anglia, Norwich, U.K.

出版信息

Exp Eye Res. 1988 Dec;47(6):807-18. doi: 10.1016/0014-4835(88)90064-4.

Abstract

The voltage and conductance of the isolated rat lens were measured using a two-internal-microelectrode technique and the potassium permeability was calculated by applying Goldman theory to 86Rb efflux data. The SH oxidizing agent diamide induces a multiphasic response in lens voltage, conductance and potassium permeability. The initial response (less than or equal to 30 min) to 1 mM diamide consists of a small depolarization (approximately 10 mV) of membrane potential accompanied by a significant decrease in conductance. The 86Rb efflux and permeability data also show an initial decrease. As this initial response is abolished by TEA (20 mM) it is probably due to an inactivation of voltage-sensitive potassium channels. After 30 min exposure to 1 mM diamide both the electrical conductance and the rate of depolarization increase. The 86Rb permeability also increases. Since the conductance increase is abolished by replacing Na+ by methyl glucamine and as it is reduced by amiloride (10(-4) M) the second phase is probably due to the activation of nonspecific cation channels. The third phase is only apparent after prolonged (approximately 12 hr) incubation in 1 mM diamide and consists of a marked increase in the bulk resistance component of the lens impedance. It is suggested that this component arises from an increase in the resistance of the fibre cell gap junctions. This cellular uncoupling may be due to calcium entering the lens through the nonspecific cation channels.

摘要

相似文献

3
Membrane conductance and potassium permeability of the rat lens.大鼠晶状体的膜电导和钾通透性
Q J Exp Physiol. 1987 Jan;72(1):81-93. doi: 10.1113/expphysiol.1987.sp003057.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验