Suppr超能文献

骨骼肌中的兴奋-收缩偶联机制。

The excitation-contraction coupling mechanism in skeletal muscle.

作者信息

Calderón Juan C, Bolaños Pura, Caputo Carlo

机构信息

Physiology and Biochemistry Research Group-Physis, Department of Physiology and Biochemistry, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.

Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela.

出版信息

Biophys Rev. 2014 Mar;6(1):133-160. doi: 10.1007/s12551-013-0135-x. Epub 2014 Jan 24.

Abstract

First coined by Alexander Sandow in 1952, the term excitation-contraction coupling (ECC) describes the rapid communication between electrical events occurring in the plasma membrane of skeletal muscle fibres and Ca release from the SR, which leads to contraction. The sequence of events in twitch skeletal muscle involves: (1) initiation and propagation of an action potential along the plasma membrane, (2) spread of the potential throughout the transverse tubule system (T-tubule system), (3) dihydropyridine receptors (DHPR)-mediated detection of changes in membrane potential, (4) allosteric interaction between DHPR and sarcoplasmic reticulum (SR) ryanodine receptors (RyR), (5) release of Ca from the SR and transient increase of Ca concentration in the myoplasm, (6) activation of the myoplasmic Ca buffering system and the contractile apparatus, followed by (7) Ca disappearance from the myoplasm mediated mainly by its reuptake by the SR through the SR Ca adenosine triphosphatase (SERCA), and under several conditions movement to the mitochondria and extrusion by the Na/Ca exchanger (NCX). In this text, we review the basics of ECC in skeletal muscle and the techniques used to study it. Moreover, we highlight some recent advances and point out gaps in knowledge on particular issues related to ECC such as (1) DHPR-RyR molecular interaction, (2) differences regarding fibre types, (3) its alteration during muscle fatigue, (4) the role of mitochondria and store-operated Ca entry in the general ECC sequence, (5) contractile potentiators, and (6) Ca sparks.

摘要

“兴奋-收缩偶联”(ECC)一词由亚历山大·桑多在1952年首次提出,它描述了骨骼肌纤维质膜中发生的电活动与肌浆网释放钙之间的快速通讯,这种通讯会导致肌肉收缩。骨骼肌单收缩过程中的一系列事件包括:(1)动作电位沿质膜的起始和传播;(2)电位在整个横管系统(T管系统)中的扩散;(3)二氢吡啶受体(DHPR)介导的膜电位变化检测;(4)DHPR与肌浆网(SR)兰尼碱受体(RyR)之间的变构相互作用;(5)钙从SR释放以及肌浆中钙浓度的瞬时增加;(6)肌浆钙缓冲系统和收缩装置的激活,随后是(7)肌浆中钙的消失,这主要是通过SR钙腺苷三磷酸酶(SERCA)将其重新摄取到SR中实现的,并且在某些情况下会转运到线粒体并由钠钙交换体(NCX)排出。在本文中,我们回顾了骨骼肌兴奋-收缩偶联的基础知识以及用于研究它的技术。此外,我们强调了一些最新进展,并指出了与兴奋-收缩偶联相关的特定问题上的知识空白,例如(1)DHPR-RyR分子相互作用;(2)纤维类型的差异;(3)肌肉疲劳期间的变化;(4)线粒体和储存-操作性钙内流在一般兴奋-收缩偶联序列中的作用;(5)收缩增强剂;以及(6)钙火花。

相似文献

1
The excitation-contraction coupling mechanism in skeletal muscle.
Biophys Rev. 2014 Mar;6(1):133-160. doi: 10.1007/s12551-013-0135-x. Epub 2014 Jan 24.
2
Excitation-contraction coupling in mammalian skeletal muscle: Blending old and last-decade research.
Front Physiol. 2022 Sep 2;13:989796. doi: 10.3389/fphys.2022.989796. eCollection 2022.
5
Excitation-contraction coupling in skeletal muscle: recent progress and unanswered questions.
Biophys Rev. 2020 Feb;12(1):143-153. doi: 10.1007/s12551-020-00610-x. Epub 2020 Jan 16.
6
Preserved Ca handling and excitation-contraction coupling in muscle fibres from diet-induced obese mice.
Diabetologia. 2020 Nov;63(11):2471-2481. doi: 10.1007/s00125-020-05256-8. Epub 2020 Aug 25.
9
Mechanistic insights into store-operated Ca entry during excitation-contraction coupling in skeletal muscle.
Biochim Biophys Acta Mol Cell Res. 2019 Jul;1866(7):1239-1248. doi: 10.1016/j.bbamcr.2019.02.014. Epub 2019 Feb 27.
10
Role of calpain in eccentric contraction-induced proteolysis of Ca-regulatory proteins and force depression in rat fast-twitch skeletal muscle.
J Appl Physiol (1985). 2017 Feb 1;122(2):396-405. doi: 10.1152/japplphysiol.00270.2016. Epub 2016 Dec 15.

引用本文的文献

1
AAV-shDUX4 provides short-term benefits but limited long-term efficacy in a DUX4 mouse model of FSHD.
Mol Ther Methods Clin Dev. 2025 Jul 12;33(3):101534. doi: 10.1016/j.omtm.2025.101534. eCollection 2025 Sep 11.
6
Longevity mechanisms in cardiac aging: exploring calcium dysregulation and senescence.
Biogerontology. 2025 Apr 21;26(3):94. doi: 10.1007/s10522-025-10229-8.
9
Metabolic acidosis and sudden infant death syndrome: overlooked data provides insight into SIDS pathogenesis.
World J Pediatr. 2025 Jan;21(1):29-40. doi: 10.1007/s12519-024-00860-9. Epub 2024 Dec 10.
10
Sorafenib induces cachexia by impeding transcriptional signaling of the SET1/MLL complex on muscle-specific genes.
iScience. 2024 Sep 10;27(10):110913. doi: 10.1016/j.isci.2024.110913. eCollection 2024 Oct 18.

本文引用的文献

3
Real-time imaging of NADPH oxidase activity in living cells using a novel fluorescent protein reporter.
PLoS One. 2013 May 21;8(5):e63989. doi: 10.1371/journal.pone.0063989. Print 2013.
4
Dimers of mitochondrial ATP synthase form the permeability transition pore.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5887-92. doi: 10.1073/pnas.1217823110. Epub 2013 Mar 25.
5
Store-operated Ca²⁺ entry is not required for store refilling in skeletal muscle.
Clin Exp Pharmacol Physiol. 2013 May;40(5):338-44. doi: 10.1111/1440-1681.12078.
7
Confocal imaging of transmembrane voltage by SEER of di-8-ANEPPS.
J Gen Physiol. 2013 Mar;141(3):371-87. doi: 10.1085/jgp.201210936.
9
A skeletal muscle ryanodine receptor interaction domain in triadin.
PLoS One. 2012;7(8):e43817. doi: 10.1371/journal.pone.0043817. Epub 2012 Aug 24.
10
Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes.
Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):12986-91. doi: 10.1073/pnas.1210718109. Epub 2012 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验