肌速记(JiSuJi)是一种用于小动物模拟的虚拟肌肉,它能根据自然主义的脉冲序列精确预测力量。
JiSuJi, a virtual muscle for small animal simulations, accurately predicts force from naturalistic spike trains.
作者信息
Jiang Weili, Adam Iris, Gladman Nicholas W, Sober Sam, Xue Qian, Elemans Coen P H, Zheng Xudong
机构信息
Mechanical Engineering Department, Rochester Institute of Technology, Rochester, NY, United States.
Sound Communication and Behavior Group, Department of Biology, University of Southern Denmark, Denmark.
出版信息
bioRxiv. 2025 Jun 18:2025.06.16.659528. doi: 10.1101/2025.06.16.659528.
Physics-based simulators for neuromechanical control of virtual animals have the potential to significantly enhance our understanding of intricate structure-function relationships in neuromuscular systems, their neural activity and motor control. However, a key challenge is the accurate prediction of the forces that muscle fibers produce based on their complex patterns of electrical activity ("spike trains") while preserving model simplicity for broader applicability. In this study, we present a chemomechanical, three-dimensional finite-element muscle model - JiSuJi (pronounced , meaning "ultrafast muscle" in Chinese) - that efficiently and accurately predicts muscle forces from naturalistic spike trains. The model's performance is validated against songbird vocal muscles, a particularly fast and therefore challenging muscle type. Our results demonstrate that JiSuJi accurately predicts both isometric and non-isometric muscle forces across a variety of naturalistic neural activity patterns. JiSuJi furthermore outperforms state-of-the-art muscle simulators for accuracy, while maintaining computational efficiency. Simulating muscle behavior offers a promising approach for investigating the underlying mechanisms of neuro-muscular interactions and precise motor control, especially in the fast-contracting muscles of animal model systems.
用于虚拟动物神经机械控制的基于物理的模拟器,有潜力显著增进我们对神经肌肉系统中复杂结构-功能关系、其神经活动和运动控制的理解。然而,一个关键挑战是,在保持模型简单性以实现更广泛适用性的同时,根据肌肉纤维复杂的电活动模式(“脉冲序列”)准确预测其产生的力。在本研究中,我们提出了一种化学机械三维有限元肌肉模型——极速肌(发音为 ,在中文中意为“超快肌肉”)——它能从自然的脉冲序列高效且准确地预测肌肉力。该模型的性能在鸣禽发声肌肉上得到了验证,鸣禽发声肌肉是一种特别快因而具有挑战性的肌肉类型。我们的结果表明,极速肌能在各种自然神经活动模式下准确预测等长和非等长肌肉力。此外,极速肌在准确性方面优于现有最先进的肌肉模拟器,同时保持了计算效率。模拟肌肉行为为研究神经肌肉相互作用和精确运动控制的潜在机制提供了一种很有前景的方法,尤其是在动物模型系统的快速收缩肌肉中。
相似文献
Clin Orthop Relat Res. 2024-9-1
Cochrane Database Syst Rev. 2016-5-5
2025-1
Cochrane Database Syst Rev. 2022-10-4
Cochrane Database Syst Rev. 2021-10-27
Int J Lang Commun Disord. 2022-3
Cochrane Database Syst Rev. 2025-6-20
本文引用的文献
R Soc Open Sci. 2025-4-2
Proc Natl Acad Sci U S A. 2024-12-24
Elife. 2023-12-19
Front Sports Act Living. 2023-7-5