Kagemoto Tatsuya, Li Amy, Dos Remedios Cris, Ishiwata Shin'ichi
Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, 2006, Australia.
Biophys Rev. 2015 Mar;7(1):15-24. doi: 10.1007/s12551-015-0165-7. Epub 2015 Feb 3.
SPOC (spontaneous oscillatory contraction) is a characteristic state of the contractile system of striated (skeletal and cardiac) muscle that exists between the states of relaxation and contraction. For example, Ca-SPOCs occur at physiological Ca levels (pCa ∼6.0), whereas ADP-SPOC occurs in the virtual absence of Ca (pCa ≥ 8; relaxing conditions in the presence of MgATP), but in the presence of inorganic phosphate (Pi) and a high concentration of MgADP. The concentration of Mg-ADP necessary for SPOC is nearly equal to or greater than the MgATP concentration for cardiac muscle and is several times higher for skeletal muscle. Thus, the cellular conditions for SPOC are broader in cardiac muscle than in skeletal muscle. During these SPOCs, each sarcomere in a myofibril undergoes length oscillation that has a saw-tooth waveform consisting of a rapid lengthening and a slow shortening phase. The lengthening phase of one half of a sarcomere is transmitted to the adjacent half of the sarcomere successively, forming a propagating wave (termed a SPOC wave). The SPOC waves are synchronized across the cardiomyocytes resulting in a visible wave of successive contractions and relaxations termed the SPOC wave. Experimentally, the SPOC period (and therefore the velocity of SPOC wave) is observed in demembranated cardiomyocytes and can be prepared from a wide range of animal hearts. These periods correlate well with the resting heartbeats of a wide range of mammals (rat, rabbit, dog, pig and cow). Preliminary experiments showed that the SPOC properties of human cardiomyocytes are similar to the heartbeat of a large dog or a pig. This correlation suggests that SPOCs may play a fundamental role in the heart. Here, we briefly summarize a range of SPOC parameters obtained experimentally, and relate them to a theoretical model to explain those characteristics. Finally, we discuss the possible significance of these SPOC properties in each and every heartbeat.
自发电振荡收缩(SPOC)是横纹肌(骨骼肌和心肌)收缩系统的一种特征状态,存在于舒张和收缩状态之间。例如,钙自发电振荡收缩(Ca-SPOC)发生在生理钙水平(pCa ∼6.0)时,而二磷酸腺苷自发电振荡收缩(ADP-SPOC)发生在几乎没有钙的情况下(pCa ≥ 8;在存在镁三磷酸腺苷(MgATP)的舒张条件下),但存在无机磷酸盐(Pi)和高浓度的镁二磷酸腺苷(MgADP)。自发电振荡收缩所需的Mg-ADP浓度几乎等于或大于心肌的MgATP浓度,而骨骼肌的则高出几倍。因此,心肌中自发电振荡收缩的细胞条件比骨骼肌中的更宽泛。在这些自发电振荡收缩过程中,肌原纤维中的每个肌节都会经历长度振荡,其具有由快速拉长和缓慢缩短阶段组成的锯齿波形。一个肌节一半的拉长阶段会依次传递到该肌节的相邻一半,形成一个传播波(称为自发电振荡收缩波)。自发电振荡收缩波在心肌细胞间同步,导致出现一系列连续收缩和舒张的可见波,称为自发电振荡收缩波。在实验中,自发电振荡收缩周期(以及因此的自发电振荡收缩波速度)在去膜心肌细胞中可以观察到,并且可以从多种动物心脏中制备得到。这些周期与多种哺乳动物(大鼠、兔子、狗、猪和牛)的静息心跳密切相关。初步实验表明,人类心肌细胞的自发电振荡收缩特性与大型犬或猪的心跳相似。这种相关性表明自发电振荡收缩可能在心脏中发挥重要作用。在此,我们简要总结了一系列通过实验获得的自发电振荡收缩参数,并将它们与一个理论模型相关联以解释这些特征。最后,我们讨论了这些自发电振荡收缩特性在每次心跳中的可能意义。