Suppr超能文献

一种多步主动刚度积分方案,用于将随机横桥模型与连续介质力学相结合,以用于心脏模拟的基础研究和临床应用。

A Multiple Step Active Stiffness Integration Scheme to Couple a Stochastic Cross-Bridge Model and Continuum Mechanics for Uses in Both Basic Research and Clinical Applications of Heart Simulation.

作者信息

Yoneda Kazunori, Okada Jun-Ichi, Watanabe Masahiro, Sugiura Seiryo, Hisada Toshiaki, Washio Takumi

机构信息

Section Solutions Division, Healthcare Solutions Development Unit, Fujitsu Japan Ltd., Tokyo, Japan.

UT-Heart Inc., Kashiwa, Japan.

出版信息

Front Physiol. 2021 Aug 13;12:712816. doi: 10.3389/fphys.2021.712816. eCollection 2021.

Abstract

In a multiscale simulation of a beating heart, the very large difference in the time scales between rapid stochastic conformational changes of contractile proteins and deterministic macroscopic outcomes, such as the ventricular pressure and volume, have hampered the implementation of an efficient coupling algorithm for the two scales. Furthermore, the consideration of dynamic changes of muscle stiffness caused by the cross-bridge activity of motor proteins have not been well established in continuum mechanics. To overcome these issues, we propose a multiple time step scheme called the multiple step active stiffness integration scheme (MusAsi) for the coupling of Monte Carlo (MC) multiple steps and an implicit finite element (FE) time integration step. The method focuses on the active tension stiffness matrix, where the active tension derivatives concerning the current displacements in the FE model are correctly integrated into the total stiffness matrix to avoid instability. A sensitivity analysis of the number of samples used in the MC model and the combination of time step sizes confirmed the accuracy and robustness of MusAsi, and we concluded that the combination of a 1.25 ms FE time step and 0.005 ms MC multiple steps using a few hundred motor proteins in each finite element was appropriate in the tradeoff between accuracy and computational time. Furthermore, for a biventricular FE model consisting of 45,000 tetrahedral elements, one heartbeat could be computed within 1.5 h using 320 cores of a conventional parallel computer system. These results support the practicality of MusAsi for uses in both the basic research of the relationship between molecular mechanisms and cardiac outputs, and clinical applications of perioperative prediction.

摘要

在心脏跳动的多尺度模拟中,收缩蛋白快速随机构象变化与确定性宏观结果(如心室压力和容积)之间的时间尺度差异极大,这阻碍了针对这两个尺度实施高效的耦合算法。此外,由运动蛋白的横桥活动引起的肌肉刚度动态变化在连续介质力学中尚未得到很好的确立。为克服这些问题,我们提出了一种多时间步长方案,称为多步主动刚度积分方案(MusAsi),用于耦合蒙特卡罗(MC)多步和隐式有限元(FE)时间积分步长。该方法聚焦于主动张力刚度矩阵,其中关于有限元模型中当前位移的主动张力导数被正确地整合到总刚度矩阵中以避免不稳定性。对MC模型中使用的样本数量和时间步长组合的敏感性分析证实了MusAsi的准确性和稳健性,并且我们得出结论,在每个有限元中使用几百个运动蛋白,1.25毫秒的有限元时间步长和0.005毫秒的MC多步的组合在准确性和计算时间之间的权衡中是合适的。此外,对于一个由45,000个四面体单元组成的双心室有限元模型,使用传统并行计算机系统的320个核心,在1.5小时内可以计算一次心跳。这些结果支持了MusAsi在分子机制与心输出量关系的基础研究以及围手术期预测的临床应用中的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6251/8414591/a6503a2cb0fb/fphys-12-712816-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验