Jennings Megan C, Forman Megan E, Duggan Stephanie M, Minbiole Kevin P C, Wuest William M
Department of Chemistry, Temple University, 1901 N 13th Street, Philadelphia, PA, 19122, USA.
Department of Chemistry, Villanova University, 800 E Lancaster Avenue, Villanova, PA, 19085, USA.
Chembiochem. 2017 Aug 17;18(16):1573-1577. doi: 10.1002/cbic.201700233. Epub 2017 Jun 27.
Quaternary ammonium compounds (QACs) are commonly used antiseptics that are now known to be subject to bacterial resistance. The prevalence and mechanisms of such resistance, however, remain underexplored. We investigated a variety of QACs, including those with multicationic structures (multiQACs), and the resistance displayed by a variety of Staphylococcus aureus strains with and without genes encoding efflux pumps, the purported main driver of bacterial resistance in MRSA. Through minimum inhibitory concentration (MIC)-, kinetic-, and efflux-based assays, we found that neither the qacR/qacA system present in S. aureus nor another efflux pump system is the main reason for bacterial resistance to QACs. Our findings suggest that membrane composition could be the predominant driver that allows CA-MRSA to withstand the assault of conventional QAC antiseptics.
季铵化合物(QACs)是常用的防腐剂,现在已知它们会受到细菌耐药性的影响。然而,这种耐药性的流行情况和机制仍未得到充分研究。我们研究了多种QACs,包括具有多阳离子结构的QACs(multiQACs),以及各种有无编码外排泵基因的金黄色葡萄球菌菌株所表现出的耐药性,外排泵被认为是耐甲氧西林金黄色葡萄球菌(MRSA)细菌耐药性的主要驱动因素。通过最低抑菌浓度(MIC)、动力学和基于外排的测定,我们发现金黄色葡萄球菌中存在的qacR/qacA系统和另一种外排泵系统都不是细菌对QACs耐药的主要原因。我们的研究结果表明,膜组成可能是导致社区获得性耐甲氧西林金黄色葡萄球菌(CA-MRSA)能够抵御传统QAC防腐剂攻击的主要驱动因素。