Bravi B, Sollich P
Current affiliation: Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Phys Biol. 2017 Jul 19;14(4):045010. doi: 10.1088/1478-3975/aa7363.
We apply a Gaussian variational approximation to model reduction in large biochemical networks of unary and binary reactions. We focus on a small subset of variables (subnetwork) of interest, e.g. because they are accessible experimentally, embedded in a larger network (bulk). The key goal is to write dynamical equations reduced to the subnetwork but still retaining the effects of the bulk. As a result, the subnetwork-reduced dynamics contains a memory term and an extrinsic noise term with non-trivial temporal correlations. We first derive expressions for this memory and noise in the linearized (Gaussian) dynamics and then use a perturbative power expansion to obtain first order nonlinear corrections. For the case of vanishing intrinsic noise, our description is explicitly shown to be equivalent to projection methods up to quadratic terms, but it is applicable also in the presence of stochastic fluctuations in the original dynamics. An example from the epidermal growth factor receptor signalling pathway is provided to probe the increased prediction accuracy and computational efficiency of our method.
我们应用高斯变分近似来对一元和二元反应的大型生化网络进行模型简化。我们关注感兴趣的一小部分变量(子网络),例如因为它们可以通过实验获取,这些变量嵌入在一个更大的网络(主体网络)中。关键目标是写出简化到子网络但仍保留主体网络影响的动力学方程。结果,简化后的子网络动力学包含一个记忆项和一个具有非平凡时间相关性的外在噪声项。我们首先在线性化(高斯)动力学中推导这个记忆和噪声的表达式,然后使用微扰幂次展开来获得一阶非线性修正。对于内在噪声消失的情况,我们的描述被明确证明在二次项以内等同于投影方法,但它也适用于原始动力学中存在随机涨落的情况。提供了一个来自表皮生长因子受体信号通路的例子来探究我们方法提高的预测准确性和计算效率。