Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
mBio. 2017 May 16;8(3):e00126-17. doi: 10.1128/mBio.00126-17.
Resistance-nodulation-division (RND) superfamily efflux systems have been widely studied for their role in antibiotic resistance, but their native biological functions remain poorly understood. We previously showed that loss of RND-mediated efflux in resulted in activation of the Cpx two-component regulatory system, which mediates adaptation to stress resulting from misfolded membrane proteins. Here, we investigated the mechanism linking RND-mediated efflux to the Cpx response. We performed transposon mutagenesis screening of RND-deficient to identify Cpx suppressors. Suppressor mutations mapped to genes involved in the biosynthesis of the catechol siderophore vibriobactin. We subsequently demonstrated that vibriobactin secretion is impaired in mutants lacking the VexGH RND efflux system and that impaired vibriobactin secretion is responsible for Cpx system activation, suggesting that VexGH secretes vibriobactin. This conclusion was bolstered by results showing that expression is induced by iron limitation and that -deficient cells exhibit reduced fitness during growth under iron-limiting conditions. Our results support a model where VexGH contributes to cellular homeostasis by effluxing vibriobactin. In the absence of , retained vibriobactin appears to chelate iron from iron-rich components of the respiratory chain, with the deferrated proteins functioning to activate the Cpx response. Our collective results demonstrate that a native function of the VexGH RND efflux system is in vibriobactin secretion and that vibriobactin efflux is critical for maintenance of cellular homeostasis. RND efflux systems are ubiquitous Gram-negative transporters that play critical roles in antimicrobial resistance. In addition to antimicrobial resistance, RND transporters also affect the expression of diverse phenotypes, including virulence, cell metabolism, and stress responses. The latter observations suggest that RND transporters fulfill unknown physiological functions in the cell independently of their role in antimicrobial resistance. is representative of many Gram-negative bacteria in encoding multiple RND transporters that are redundant in antimicrobial resistance and affect multiple phenotypes. Here we describe a novel function of the VexGH RND transporter in vibriobactin secretion. We show that vibriobactin production in VexGH-deficient cells impacts cell homeostasis, leading to activation of the Cpx stress response and reduced fitness under iron-limiting conditions. Our results highlight a native physiological function of an RND transporter and provide insight into the selective forces that maintain what was thought to be a redundant multidrug transporter.
耐药-结节-分裂(RND)超级家族外排系统因其在抗生素耐药性中的作用而被广泛研究,但它们的天然生物学功能仍知之甚少。我们之前曾表明, 在 中失去 RND 介导的外排作用会导致 Cpx 双组分调节系统的激活,该系统介导了对由于错误折叠的膜蛋白而导致的应激的适应。在这里,我们研究了将 RND 介导的外排与 Cpx 反应联系起来的机制。我们对缺乏 RND 的 进行转座子诱变筛选,以鉴定 Cpx 抑制剂。抑制突变映射到参与儿茶酚铁载体 vibriobactin 生物合成的基因上。我们随后证明,缺乏 VexGH RND 外排系统的突变体中 vibriobactin 的分泌受到损害,并且 vibriobactin 分泌的受损导致 Cpx 系统的激活,这表明 VexGH 分泌 vibriobactin。这一结论得到了以下结果的支持:结果表明, 表达受铁限制诱导,并且 在铁限制条件下生长时, -缺陷细胞的适应性降低。我们的结果支持了这样一种模型,即 VexGH 通过外排 vibriobactin 来促进细胞内稳态。在没有 的情况下,保留的 vibriobactin 似乎从呼吸链中铁含量丰富的成分中螯合铁,而脱铁蛋白则用于激活 Cpx 反应。我们的综合结果表明, VexGH RND 外排系统的天然功能是 vibriobactin 的分泌,并且 vibriobactin 的外排对于维持细胞内稳态至关重要。RND 外排系统是普遍存在的革兰氏阴性转运蛋白,在抗菌药物耐药性中起着关键作用。除了抗菌药物耐药性外,RND 转运蛋白还影响多种表型的表达,包括毒力、细胞代谢和应激反应。后一种观察结果表明,RND 转运蛋白在细胞中独立于其在抗菌药物耐药性中的作用履行未知的生理功能。 是许多革兰氏阴性菌的代表,它们编码多种在抗菌药物耐药性中冗余并影响多种表型的 RND 转运蛋白。在这里,我们描述了 VexGH RND 转运蛋白在 vibriobactin 分泌中的新功能。我们表明,VexGH 缺陷细胞中的 vibriobactin 产生会影响细胞内稳态,导致 Cpx 应激反应的激活和铁限制条件下适应性降低。我们的结果强调了 RND 转运蛋白的一种天然生理功能,并深入了解了维持被认为是冗余的多药转运蛋白的选择压力。