Suppr超能文献

蛋白质组学 LC-MS 和 MS/MS 数据集中药物肽的自动分配。

Automatic assignment of metal-containing peptides in proteomic LC-MS and MS/MS data sets.

机构信息

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.

Bruker Daltonics Inc., Billerica, MA, USA.

出版信息

Analyst. 2017 Jun 7;142(11):2029-2037. doi: 10.1039/c7an00075h. Epub 2017 May 17.

Abstract

Transition metal-containing proteins and enzymes are critical for the maintenance of cellular function and metal-based (metallo)drugs are commonly used for the treatment of many diseases, such as cancer. Detection and characterisation of metallodrug targets is crucial for improving drug-design and therapeutic efficacy. Due to the unique isotopic ratios of many metal species, and the complexity of proteomic samples, standard MS data analysis of these species is unsuitable for accurate assignment. Herein a new method for differentiating metal-containing species within complex LCMS data is presented based upon the Smart Numerical Annotation Procedure (SNAP). SNAP-LC accounts for the change in isotopic envelopes for analytes containing non-standard species, such as metals, and will accurately identify, record, and display the particular spectra within extended LCMS runs that contain target species, and produce accurate lists of matched peaks, greatly assisting the identification and assignment of modified species and tailored to the metals of interest. Analysis of metallated species obtained from tryptic digests of common blood proteins after reactions with three candidate metallodrugs is presented as proof-of-concept examples and demonstrates the effectiveness of SNAP-LC for the fast and accurate elucidation of metallodrug targets.

摘要

含过渡金属的蛋白质和酶对于维持细胞功能至关重要,基于金属的(金属)药物通常用于治疗许多疾病,如癌症。金属药物靶标的检测和表征对于提高药物设计和治疗效果至关重要。由于许多金属物种的独特同位素比,以及蛋白质组样品的复杂性,这些物种的标准 MS 数据分析不适合准确分配。在此,提出了一种基于智能数值注释程序 (SNAP) 的区分复杂 LCMS 数据中含金属物种的新方法。SNAP-LC 考虑了含有非标准物种(如金属)的分析物的同位素包络的变化,并且将准确地识别、记录和显示包含目标物种的扩展 LCMS 运行中特定的光谱,并生成匹配峰的准确列表,极大地帮助了修饰物种的鉴定和分配,并针对感兴趣的金属进行了定制。本文以三种候选金属药物与常见血液蛋白的酶解产物反应后获得的金属化物种的分析为例,证明了 SNAP-LC 用于快速准确阐明金属药物靶标的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验