Suppr超能文献

外电场驱动硅烯的超低热导率。

External electric field driving the ultra-low thermal conductivity of silicene.

机构信息

Institute of Mineral Engineering, Division of Materials Science and Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen 52064, Germany.

出版信息

Nanoscale. 2017 Jun 1;9(21):7227-7234. doi: 10.1039/c7nr01596h.

Abstract

The manipulation of thermal transport is in increasing demand as heat transfer plays a critical role in a wide range of practical applications, such as efficient heat dissipation in nanoelectronics and heat conduction hindering in solid-state thermoelectrics. It is well established that the thermal transport in semiconductors and insulators (phonons) can be effectively modulated by structure engineering or materials processing. However, almost all the existing approaches involve altering the original atomic structure of materials, which would be hindered due to either irreversible structure change or limited tunability of thermal conductivity. Motivated by the inherent relationship between phonon behavior and interatomic electrostatic interaction, we comprehensively investigate the effect of external electric field, a widely used gating technique in modern electronics, on the lattice thermal conductivity (κ). Taking two-dimensional silicon (silicene) as a model, we demonstrate that by applying an electric field (E = 0.5 V Å) the κ of silicene can be reduced to a record low value of 0.091 W m K, which is more than two orders of magnitude lower than that without an electric field (19.21 W m K) and is even comparable to that of the best thermal insulation materials. Fundamental insights are gained from observing the electronic structures. With an electric field applied, due to the screened potential resulting from the redistributed charge density, the interactions between silicon atoms are renormalized, leading to phonon renormalization and the modulation of phonon anharmonicity through electron-phonon coupling. Our study paves the way for robustly tuning phonon transport in materials without altering the atomic structure, and would have significant impact on emerging applications, such as thermal management, nanoelectronics and thermoelectrics.

摘要

热传输的调控在越来越多的领域得到了广泛的关注,因为热传递在许多实际应用中起着至关重要的作用,例如纳米电子学中的高效散热和固态热电学中的热传导阻碍。众所周知,半导体和绝缘体(声子)中的热传输可以通过结构工程或材料处理来有效地调节。然而,几乎所有现有的方法都涉及改变材料的原始原子结构,这会受到不可逆的结构变化或热导率的有限可调性的阻碍。受声子行为与原子间静电相互作用之间固有关系的启发,我们全面研究了外电场(现代电子学中广泛使用的门控技术)对晶格热导率(κ)的影响。以二维硅(硅烯)为例,我们证明通过施加电场(E = 0.5 V Å),硅烯的 κ 可以降低到创纪录的低值 0.091 W m K,比没有电场时低两个数量级(19.21 W m K),甚至可与最佳隔热材料相媲美。通过观察电子结构获得了基本的认识。施加电场后,由于重新分布的电荷密度产生的屏蔽势,硅原子之间的相互作用被重整化,导致声子重整化,并通过电子-声子耦合调制声子非谐性。我们的研究为在不改变原子结构的情况下在材料中稳健地调节声子输运铺平了道路,并且会对新兴应用产生重大影响,例如热管理、纳米电子学和热电学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验