Wald M, Borda E S, Sterin-Borda L
Centrol de Estudios Farmacológicos y de Principios Naturales, Consejo Nacional de Investigaciones Cientificas y Técnicas de la República Argentina, Buenos Aires.
Can J Physiol Pharmacol. 1988 Sep;66(9):1154-60. doi: 10.1139/y88-190.
The inotropic effect of methoxamine, as well as the alpha-adrenoceptor population, were measured in cardiac tissue from normal and short-term (3 days) diabetic rats. Methoxamine increased the tension of both normal and diabetic ventricles, but in diabetic ones, the dose-response curve to methoxamine was shifted to the left and the efficacy of the alpha-agonist was enhanced. This phenomenon was accompanied by an increase in receptor affinity, while the number of alpha-adrenoceptor sites decreased. Inhibitors of alpha 1-adrenoceptors blocked, in a competitive manner, the positive inotropic effect of methoxamine in both types of ventricles. Inhibition of phospholipase C blocked the ventricular response to the methoxamine in nondiabetic as well as in diabetic hearts. Synthetic diacylglyceride (DAG) potentiated the inotropic action of the alpha-agonist in normal ventricles and increased the affinity with a decreased number of alpha-adrenoceptor sites in normal ventricles, producing values of Kd and Bmax similar to those of the acute diabetic heart. Inhibitors of protein kinase C partially reduced the supersensitivity to alpha-agonists in diabetic ventricles and prevented the stimulatory action of DAG upon the positive inotropic effect of methoxamine in normal ventricles. These results suggest that alpha-adrenergic inotropic stimulation is secondary to receptor-mediated hydrolysis of phosphoinositides, generating some oxidative metabolites (DAG) which, in turn, may be responsible for the inotropic effect. In the acute diabetic state, the supersensitivity to alpha-agonist could be due to high activity of phospholipase C (with an increase in DAG production) which induces alteration in the membrane alpha-adrenergic receptors.
在正常和短期(3天)糖尿病大鼠的心脏组织中,测定了甲氧明的变力作用以及α-肾上腺素能受体数量。甲氧明增加了正常和糖尿病心室的张力,但在糖尿病心室中,对甲氧明的剂量反应曲线向左移动,α-激动剂的效力增强。这种现象伴随着受体亲和力的增加,而α-肾上腺素能受体位点的数量减少。α1-肾上腺素能受体抑制剂以竞争性方式阻断了甲氧明在两种类型心室中的正性变力作用。抑制磷脂酶C可阻断非糖尿病和糖尿病心脏对甲氧明的心室反应。合成二酰甘油(DAG)增强了α-激动剂在正常心室中的变力作用,并增加了正常心室中α-肾上腺素能受体位点数量减少时的亲和力,产生的Kd和Bmax值与急性糖尿病心脏相似。蛋白激酶C抑制剂部分降低了糖尿病心室对α-激动剂的超敏反应,并阻止了DAG对甲氧明在正常心室中的正性变力作用的刺激作用。这些结果表明,α-肾上腺素能变力刺激是受体介导的磷酸肌醇水解的继发效应,产生一些氧化代谢产物(DAG),进而可能是变力作用的原因。在急性糖尿病状态下,对α-激动剂的超敏反应可能是由于磷脂酶C的高活性(伴随着DAG产生增加),这会导致膜α-肾上腺素能受体发生改变。