Schneiderman Emet D, Kowalski Charles J
Department of Orthodontics, University of Detroit school of Dentistry, Detroit, Michigan 48207.
Department of Oral Biology, The University of Michigan School of Dentistry, Ann Arbor, Michigan 48109.
Am J Hum Biol. 1989;1(1):31-42. doi: 10.1002/ajhb.1310010108.
Longitudinal data are widely regarded as the most efficient and informative type of data with which to investigate growth. Paradoxically, appropriate statistical methods for analyzing longitudinal data have been unavailable; with the exception of a computer program for executing Rao's (Biometrika 46:49-58, 1959) one-sample polynomial growth curve analysis (Schneiderman and Kowalski, Am. J. Phys. Anthropol. 67:323-333, 1985) and another applying the Preece-Baines function (Brown and Townsend, Ann. Hum. Biol. 9:495-505, 1982), no programs for analyzing longitudinal data are generally available to the scientific community. Whereas much of the pediatrically oriented work has involved fitting growth curves for individual children, the concern here is the estimation of growth trends for populations. An Adequate understanding of average tendencies is a prerequisite to understanding the growth of individuals. The present paper implements Hills' (Biometrics 24:189-196, 1968) analysis, which is formally equivalent to Rao's but uses finite differences instead of orthogonal polynomials. This method is suitable for data collected at unequal time points and generates explicit measures of velocity and acceleration. The polynomial specification of the curve that best fits the data is also determined with this method. An additional advantage of this approach is that it is conceptually simpler than the classic model of Rao. An application of this method is given using the same craniofacial growth data as in our earlier (1985) paper for comparability. We provide an easy to use program written in GAU's (Edlefson and Jones, Kent, WA; Applied Technical Systems, 1985), a matrix programming language that runs on PC-compatible microcomputers. This implementation for PCs extends the accessibility to investigators who may not have access to mainframe computers.
纵向数据被广泛认为是研究生长最有效且信息丰富的数据类型。矛盾的是,一直没有适用于分析纵向数据的恰当统计方法;除了一个用于执行Rao(《生物统计学》46:49 - 58,1959)的单样本多项式生长曲线分析的计算机程序(施奈德曼和科瓦尔斯基,《美国物理人类学杂志》67:323 - 333,1985)以及另一个应用普里斯 - 贝恩斯函数的程序(布朗和汤森德,《人类生物学杂志》9:495 - 505,1982)外,科学界一般没有可用于分析纵向数据的程序。尽管许多面向儿科的研究工作涉及为个体儿童拟合生长曲线,但这里关注的是人群生长趋势的估计。充分理解平均趋势是理解个体生长的先决条件。本文采用了希尔斯(《生物统计学》24:189 - 196,1968)的分析方法,该方法在形式上等同于Rao的方法,但使用有限差分而非正交多项式。此方法适用于在不等时间点收集的数据,并能生成速度和加速度的明确度量。同时,该方法还能确定最适合数据的曲线的多项式规格。这种方法的另一个优点是在概念上比Rao的经典模型更简单。为便于比较,本文使用了与我们早期(1985年)论文相同的颅面生长数据来应用此方法。我们提供了一个用GAU(埃德莱夫森和琼斯,华盛顿州肯特市;应用技术系统公司,1985)编写的易于使用的程序,GAU是一种运行在与PC兼容的微型计算机上的矩阵编程语言。这种针对个人计算机的实现方式扩展了那些可能无法使用大型计算机的研究人员的可及性。