Iglesias César, Panizza Paola, Rodriguez Giordano Sonia
Cátedra de Microbiología, DEPBIO, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800, Montevideo, Uruguay.
Laboratorio de Biocatálisis y Biotransformaciones, DEPBIO-DQO, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800, Montevideo, Uruguay.
Appl Microbiol Biotechnol. 2017 Jul;101(14):5677-5687. doi: 10.1007/s00253-017-8309-2. Epub 2017 May 17.
Chiral amines are essential precursors in the production of biologically active compounds, including several important drugs. Among the biocatalytic strategies that have been developed for their synthesis, the use of ω-transaminases (ω-TA) appears as an attractive alternative allowing the stereoselective amination of prochiral ketones. However, the problems associated with narrow substrate specificity, unfavourable reaction equilibrium and expensive amine donors still hamper its industrial application. The search for novel enzymes from nature can contribute to expand the catalytic repertoire of ω-TA and help to circumvent some of these problems. A genome mining approach, based on the work described by Höhne et al., was applied for selection of potential R-ω-TA. Additional criteria were used to select an enzyme that differs from previously described ones. A candidate R-ω-TA from Capronia semiimmersa was selected, cloned and expressed in Escherichia coli. Interestingly, alignment of this enzyme with previously reported TA sequences revealed the presence of two additional amino acid residues in a loop close to the active site. The impact of this change was analysed with a structural model based on crystallized R-ω-TAs. Analysis of the substrate specificity of R-ω-TA from C. semiimmersa indicates that it accepts a diversity of ketones as substrates yielding the corresponding amine with good yields and excellent enantioselectivity. The expressed enzyme accepts isopropylamine as amine donor what makes it suitable for industrial processes.
手性胺是生物活性化合物生产中的重要前体,包括几种重要药物。在已开发的用于其合成的生物催化策略中,使用ω-转氨酶(ω-TA)似乎是一种有吸引力的替代方法,可实现前手性酮的立体选择性胺化。然而,与底物特异性窄、反应平衡不利以及胺供体昂贵相关的问题仍然阻碍其工业应用。从自然界中寻找新型酶有助于扩大ω-TA的催化范围,并有助于解决其中一些问题。基于Höhne等人描述的工作,采用基因组挖掘方法来筛选潜在的R-ω-TA。使用其他标准来选择一种与先前描述的酶不同的酶。从半浸 Capronia中筛选出一种候选R-ω-TA,在大肠杆菌中进行克隆和表达。有趣的是,将该酶与先前报道的TA序列进行比对,发现在靠近活性位点的一个环中存在两个额外的氨基酸残基。基于结晶的R-ω-TA的结构模型分析了这种变化的影响。对半浸 Capronia的R-ω-TA的底物特异性分析表明,它接受多种酮作为底物,能以良好的产率和优异的对映选择性生成相应的胺。所表达的酶接受异丙胺作为胺供体,这使其适用于工业生产过程。