Thomson R, Kawrakow I
Carleton Univ, Ottawa, ON.
Siemens, Heidelberg, Germany.
Med Phys. 2012 Jun;39(6Part17):3817-3818. doi: 10.1118/1.4735578.
Widely-used classical trajectory Monte Carlo simulations of low energy electron transport neglect the quantum nature of electrons; however, at sub-1 keV energies quantum effects have the potential to become significant. This work compares quantum and classical simulations within a simplified model of electron transport in water.
Electron transport is modeled in water droplets using quantum mechanical (QM) and classical trajectory Monte Carlo (MC) methods. Water droplets are modeled as collections of point scatterers representing water molecules from which electrons may be isotropically scattered. The role of inelastic scattering is investigated by introducing absorption. QM calculations involve numerically solving a system of coupled equations for the electron wavefield incident on each scatterer. A minimum distance between scatterers is introduced to approximate structured water. The average QM water droplet incoherent cross section is compared with the MC cross section; a relative error (RE) on the MC results is computed.
RE varies with electron energy, average and minimum distances between scatterers, and scattering amplitude. The mean free path is generally the relevant length scale for estimating RE. The introduction of a minimum distance between scatterers increases RE substantially (factors of 5 to 10), suggesting that the structure of water must be modeled for accurate simulations. Inelastic scattering does not improve agreement between QM and MC simulations: for the same magnitude of elastic scattering, the introduction of inelastic scattering increases RE. Droplet cross sections are sensitive to droplet size and shape; considerable variations in RE are observed with changing droplet size and shape.
At sub-1 keV energies, quantum effects may become non-negligible for electron transport in condensed media. Electron transport is strongly affected by the structure of the medium. Inelastic scatter does not improve agreement between QM and MC simulations of low energy electron transport in condensed media.
广泛使用的低能电子输运经典轨迹蒙特卡罗模拟忽略了电子的量子性质;然而,在低于1keV的能量下,量子效应可能变得显著。这项工作在水的简化电子输运模型中比较了量子和经典模拟。
使用量子力学(QM)和经典轨迹蒙特卡罗(MC)方法对水滴中的电子输运进行建模。水滴被建模为代表水分子的点散射体的集合,电子可以从这些散射体各向同性地散射。通过引入吸收来研究非弹性散射的作用。量子力学计算涉及对入射到每个散射体上的电子波场的耦合方程组进行数值求解。引入散射体之间的最小距离以近似结构化水。将平均量子力学水滴非相干截面与蒙特卡罗截面进行比较;计算蒙特卡罗结果的相对误差(RE)。
相对误差随电子能量、散射体之间的平均距离和最小距离以及散射幅度而变化。平均自由程通常是估计相对误差的相关长度尺度。散射体之间最小距离的引入显著增加了相对误差(5到10倍),这表明必须对水的结构进行建模才能进行准确的模拟。非弹性散射并没有改善量子力学和蒙特卡罗模拟之间的一致性:对于相同大小的弹性散射,引入非弹性散射会增加相对误差。液滴截面对液滴大小和形状敏感;随着液滴大小和形状的变化,观察到相对误差有相当大的变化。
在低于1keV的能量下,量子效应对于凝聚介质中的电子输运可能变得不可忽略。电子输运受到介质结构的强烈影响。非弹性散射并没有改善凝聚介质中低能电子输运的量子力学和蒙特卡罗模拟之间的一致性。