Kabuki S, Kimura H, Kubo H, Ogawa K, Kunieda E, Tanimori T
Tokai University, Isehara, Kanagawa.
Kyoto University, Sakyo-ku, Kyoto.
Med Phys. 2012 Jun;39(6Part5):3639. doi: 10.1118/1.4734779.
Conventional gamma-ray detector, PET and SPECT, have the limitation of energy and field of view. These limitations are major problems of studying for a new medical imaging. Therefore, we have developed the new imaging detector which is an electron-tracking Compton camera (ETCC).
A reconstruction method of Compton camera (CC) is using the physics principle. Because of using physics principle, CC can have a wide energy dynamic range and wide field of view. Conventional CC, however, cannot catch Compton recoil electron tracks, and this is one of the reasons of low imaging power. We have developed a time projection chamber (TPC) using micro pixel chamber (μPIC) as the new detector for ETCC. The μPIC is 2-dimensional gaseous detector and this position resolution is less than 400 μm. Using this detector, ETCC can get electron tracks which are generated from Compton scattering. In this paper, we show the prototype ETCC performance and imaging results.
ETCC achieved a wide energy dynamic range (200-1300keV) and wide field of view (3 steradian). Also we succeeded in imaging new imaging reagents using mice as follows; (1) F-18-FDG (511 keV) and I-131-MIBG (364 keV) simultaneous imaging for double clinical tracer imaging, (2) Zn-65- porphyrin (1116 keV) imaging for high energy gamma-ray imaging and, (3) imaging of some minerals (Mn-54, Zn-65) in mice and so on. And we succeeded in 3-D imaging which has imaged only one direction using one head camera.
We have developed the ETCC for new medical imaging device and succeeded in imaging the some imaging reagents. We started to develop the new ETCC which can image the mouse within 30 min. Thus, this detector has the possibility of new medical imaging.
传统的伽马射线探测器、正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)存在能量和视野方面的局限性。这些局限性是新型医学成像研究中的主要问题。因此,我们开发了一种新型成像探测器——电子跟踪康普顿相机(ETCC)。
康普顿相机(CC)的重建方法利用了物理原理。由于采用了物理原理,CC能够拥有宽能量动态范围和宽视野。然而,传统的CC无法捕捉康普顿反冲电子轨迹,这是其成像能力较低的原因之一。我们开发了一种以微像素室(μPIC)为基础的时间投影室(TPC)作为ETCC的新型探测器。μPIC是一种二维气体探测器,其位置分辨率小于400μm。利用该探测器,ETCC能够获取康普顿散射产生的电子轨迹。在本文中,我们展示了ETCC原型的性能和成像结果。
ETCC实现了宽能量动态范围(200 - 1300keV)和宽视野(3球面度)。我们还成功地利用小鼠对新型成像试剂进行了成像,具体如下:(1)F - 18 - FDG(511keV)和I - 131 - MIBG(364keV)同时成像用于双临床示踪剂成像;(2)Zn - 65 - 卟啉(1116keV)成像用于高能伽马射线成像;(3)小鼠体内某些矿物质(Mn - 54、Zn - 65)的成像等。并且我们成功实现了仅使用一个探头相机对一个方向进行成像的三维成像。
我们开发了用于新型医学成像设备的ETCC,并成功对一些成像试剂进行了成像。我们开始研发能够在30分钟内对小鼠成像的新型ETCC。因此,这种探测器具有用于新型医学成像的可能性。