Suppr超能文献

设计人工因子以特异性调控人类细胞中的可变剪接

Engineering Artificial Factors to Specifically Manipulate Alternative Splicing in Human Cells.

作者信息

Wei Huan-Huan, Liu Yuanlong, Wang Yang, Lu Qianyun, Yang Xuerong, Li Jiefu, Wang Zefeng

机构信息

Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences (SIBS).

Institute of Cancer Stem Cell, Second Affiliated Hospital, Cancer Center, Dalian Medical University.

出版信息

J Vis Exp. 2017 Apr 26(122):54967. doi: 10.3791/54967.

Abstract

The processing of most eukaryotic RNAs is mediated by RNA Binding Proteins (RBPs) with modular configurations, including an RNA recognition module, which specifically binds the pre-mRNA target and an effector domain. Previously, we have taken advantage of the unique RNA binding mode of the PUF domain in human Pumilio 1 to generate a programmable RNA binding scaffold, which was used to engineer various artificial RBPs to manipulate RNA metabolism. Here, a detailed protocol is described to construct Engineered Splicing Factors (ESFs) that are specifically designed to modulate the alternative splicing of target genes. The protocol includes how to design and construct a customized PUF scaffold for a specific RNA target, how to construct an ESF expression plasmid by fusing a designer PUF domain and an effector domain, and how to use ESFs to manipulate the splicing of target genes. In the representative results of this method, we have also described the common assays of ESF activities using splicing reporters, the application of ESF in cultured human cells, and the subsequent effect of splicing changes. By following the detailed protocols in this report, it is possible to design and generate ESFs for the regulation of different types of Alternative Splicing (AS), providing a new strategy to study splicing regulation and the function of different splicing isoforms. Moreover, by fusing different functional domains with a designed PUF domain, researchers can engineer artificial factors that target specific RNAs to manipulate various steps of RNA processing.

摘要

大多数真核生物RNA的加工是由具有模块化结构的RNA结合蛋白(RBP)介导的,这些结构包括一个RNA识别模块,它能特异性结合前体mRNA靶标和一个效应结构域。此前,我们利用人Pumilio 1中PUF结构域独特的RNA结合模式生成了一个可编程的RNA结合支架,该支架用于构建各种人工RBP以操纵RNA代谢。在此,我们描述了一个详细的方案,用于构建专门设计用于调节靶基因可变剪接的工程化剪接因子(ESF)。该方案包括如何为特定RNA靶标设计和构建定制的PUF支架,如何通过融合设计的PUF结构域和效应结构域构建ESF表达质粒,以及如何使用ESF来操纵靶基因的剪接。在该方法的代表性结果中,我们还描述了使用剪接报告基因对ESF活性进行的常见检测、ESF在培养的人细胞中的应用以及剪接变化的后续影响。通过遵循本报告中的详细方案,有可能设计并生成用于调节不同类型可变剪接(AS)的ESF,为研究剪接调控和不同剪接异构体的功能提供了一种新策略。此外,通过将不同的功能结构域与设计的PUF结构域融合,研究人员可以构建靶向特定RNA的人工因子,以操纵RNA加工的各个步骤。

相似文献

3
Expanding RNA binding specificity and affinity of engineered PUF domains.
Nucleic Acids Res. 2018 May 18;46(9):4771-4782. doi: 10.1093/nar/gky134.
4
Specific and modular binding code for cytosine recognition in Pumilio/FBF (PUF) RNA-binding domains.
J Biol Chem. 2011 Jul 29;286(30):26732-42. doi: 10.1074/jbc.M111.244889. Epub 2011 Jun 8.
5
Engineering splicing factors with designed specificities.
Nat Methods. 2009 Nov;6(11):825-30. doi: 10.1038/nmeth.1379. Epub 2009 Oct 4.
6
Engineered proteins with Pumilio/fem-3 mRNA binding factor scaffold to manipulate RNA metabolism.
FEBS J. 2013 Aug;280(16):3755-67. doi: 10.1111/febs.12367. Epub 2013 Jun 24.
7
Manipulation of RNA using engineered proteins with customized specificity.
Adv Exp Med Biol. 2014;825:199-225. doi: 10.1007/978-1-4939-1221-6_6.
8
ExonSuite: algorithmically optimizing alternative gene splicing for the PUF proteins.
Comput Biol Med. 2013 Sep;43(8):1023-4. doi: 10.1016/j.compbiomed.2013.05.014. Epub 2013 May 28.
9
Engineering circular RNA regulators to specifically promote circular RNA production.
Theranostics. 2021 May 24;11(15):7322-7336. doi: 10.7150/thno.56990. eCollection 2021.
10
Nested PUF Proteins: Extending Target RNA Elements for Gene Regulation.
Chembiochem. 2018 Jan 18;19(2):171-176. doi: 10.1002/cbic.201700458. Epub 2017 Dec 18.

引用本文的文献

1
[Construction of an adenovirus vector expressing engineered splicing factor for regulating alternative splicing of YAP1 in neonatal rat cardiomyocytes].
Nan Fang Yi Ke Da Xue Xue Bao. 2022 Jul 20;42(7):1013-1018. doi: 10.12122/j.issn.1673-4254.2022.07.07.

本文引用的文献

1
RNA splicing is a primary link between genetic variation and disease.
Science. 2016 Apr 29;352(6285):600-4. doi: 10.1126/science.aad9417. Epub 2016 Apr 28.
2
RNA mis-splicing in disease.
Nat Rev Genet. 2016 Jan;17(1):19-32. doi: 10.1038/nrg.2015.3. Epub 2015 Nov 23.
3
SRSF1-Regulated Alternative Splicing in Breast Cancer.
Mol Cell. 2015 Oct 1;60(1):105-17. doi: 10.1016/j.molcel.2015.09.005.
4
Engineering RNA-binding proteins with diverse activities.
Wiley Interdiscip Rev RNA. 2015 Nov-Dec;6(6):597-613. doi: 10.1002/wrna.1296. Epub 2015 Aug 28.
5
A day in the life of the spliceosome.
Nat Rev Mol Cell Biol. 2014 Feb;15(2):108-21. doi: 10.1038/nrm3742.
7
Aberrant alternative splicing is another hallmark of cancer.
Int J Cell Biol. 2013;2013:463786. doi: 10.1155/2013/463786. Epub 2013 Sep 11.
8
A complex network of factors with overlapping affinities represses splicing through intronic elements.
Nat Struct Mol Biol. 2013 Jan;20(1):36-45. doi: 10.1038/nsmb.2459. Epub 2012 Dec 16.
9
Engineering RNA endonucleases with customized sequence specificities.
Nat Commun. 2012;3:1147. doi: 10.1038/ncomms2154.
10
Intronic splicing enhancers, cognate splicing factors and context-dependent regulation rules.
Nat Struct Mol Biol. 2012 Oct;19(10):1044-52. doi: 10.1038/nsmb.2377. Epub 2012 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验