Van Herck H, Crijns W, Slagmolen P, Maes F, Van den Heuvel F, Haustermans K
Catholic University of Leuven, Leuven, Belgium.
University Hospitals Leuven, Leuven, Belgium.
Med Phys. 2012 Jun;39(6Part8):3684. doi: 10.1118/1.4734974.
To automatically detect intrafraction motion during arc radiotherapy for prostate cancer patients by tracking fiducial markers in two-dimensional MV images acquired using the treatment beam, in order to adjust radiation dose accordingly.
Four fiducial gold markers are implanted in a patient's prostate. Patients are irradiated using a Varian Linac 2100 C/D with RapidArc upgrade (Varian Medical Systems, Palo Alto, CA). MV images (1024 × 768 pixels, 0.392 × 0.392 mm pixel size) acquired during a 360 degree gantry rotation at a one second interval (5 degrees) are preprocessed by subtracting a smoothed version of the image to retain only high image frequencies. Edge detection is then applied, followed by a one pixel wide dilation and erosion to transform the edges into contiguous regions. Next, our method searches the centers of visible markers (i.e. not covered by the MLC), constrained by marker estimates from the planning CT. This is done by finding all contiguous regions and maximizing a marker-region distance criterion for every visible marker. A two-dimensional estimate correction over consecutive projections is also implemented to improve marker estimates during gantry rotation.
We applied our method on four treatment fractions of the same patient. As such, a total of 191 projections with manually indicated marker ends as ground truth were used as validation. Markers were indicated twice on all images, to include observer errors. Results show a mean detection error of less than 0.5 mm in the projection image (standard deviation 0.6 mm), with an execution time of less than one second per image in matlab. Undetected markers and false positives mostly occurred at moving leaf boundaries, where marker visibility was determined by the observer.
Preliminary findings demonstrate that this method can be used to detect intrafraction motion during arc radiotherapy by only using projected MV images. Research sponsored by Varian Medical Systems, Palo Alto, CA.
通过在使用治疗束获取的二维兆伏级(MV)图像中跟踪基准标记物,自动检测前列腺癌患者弧形放射治疗过程中的分次内运动,以便相应地调整辐射剂量。
在患者前列腺中植入四个基准金标记物。使用配备了快速弧形(RapidArc)升级功能的瓦里安直线加速器2100 C/D(瓦里安医疗系统公司,加利福尼亚州帕洛阿尔托)对患者进行照射。在360度机架旋转过程中以一秒间隔(5度)获取的MV图像(1024×768像素,像素尺寸为0.392×0.392毫米),通过减去图像的平滑版本进行预处理,以仅保留高图像频率。然后应用边缘检测,接着进行一个像素宽的膨胀和腐蚀操作,将边缘转换为连续区域。接下来,我们的方法在计划CT的标记物估计的约束下,搜索可见标记物的中心(即未被多叶准直器覆盖的部分)。这通过找到所有连续区域并为每个可见标记物最大化标记物 - 区域距离准则来实现。还实施了在连续投影上的二维估计校正,以改善机架旋转期间的标记物估计。
我们将我们的方法应用于同一患者的四个治疗分次。因此,总共191个带有手动标注的标记物末端作为真实值的投影被用作验证。在所有图像上对标记物进行了两次标注,以计入观察者误差。结果显示,在投影图像中平均检测误差小于0.5毫米(标准差0.6毫米),在Matlab中每张图像的执行时间小于一秒。未检测到的标记物和误报大多发生在移动的叶片边界处,标记物的可见性由观察者确定。
初步研究结果表明该方法可仅使用投影的MV图像来检测弧形放射治疗过程中的分次内运动。由加利福尼亚州帕洛阿尔托的瓦里安医疗系统公司赞助的研究。