Suppr超能文献

Parathyroid hormone receptors in human dermal fibroblasts: structural and functional characterization.

作者信息

Pun K K, Arnaud C D, Nissenson R A

机构信息

Veterans Administration Medical Center, San Francisco, CA 94121.

出版信息

J Bone Miner Res. 1988 Aug;3(4):453-60. doi: 10.1002/jbmr.5650030413.

Abstract

Previous studies have established the presence of parathyroid hormone (PTH)-sensitive adenylate cyclase activity in cultured human skin fibroblasts. The present study was undertaken to identify and quantitate PTH receptors directly in such cells. Human dermal fibroblast cell line CRL 1564 was found to possess specific binding sites for [125I]PTH(1-34). These sites bound PTH selectively; bovine and human PTH(1-34) and PTH(1-84) competed for [125I]PTH(1-34) binding sites, whereas the unrelated peptides calcitonin, insulin, AVP, angiotensin II, and ACTH(1-24) were inactive even at micromolar concentrations. Competitive binding experiments demonstrated the presence of binding site heterogeneity. These data fit a "two-site" model (p less than 0.001) in which one binding component has high affinity (Kd = 2.5 ng/ml = 0.6 nM) and low capacity (10(4) sites/cell) while the other has low affinity (Kd = 5.9 micrograms/ml = 1.5 microM) and high capacity (greater than 10(7) sites/cell). Similar high- and low-affinity [125I]bPTH(1-34) binding sites were seen also in CRL 1564 membranes containing a PTH-responsive adenylate cyclase. The Kd of the high-affinity sites was identical to the concentration of unlabeled bPTH(1-34) (4.2 ng/ml = 1.0 nM) required to half-maximally elevated cyclic AMP in CRL 1564 cells. Affinity labeling of specific PTH binding sites revealed the presence of multiple components with Mrs of 85, 70, 40, 33, and 23 kD on SDS-PAGE. Competition experiments did not disclose structurally discrete high- and low-affinity sites. Thus, structurally homologous PTH receptors in human skin fibroblasts apparently can assume two affinity states: (i) a high-affinity state coupled to adenylate cyclase and (ii) a low-affinity state that may represent uncoupled receptors.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验