Edhan Omer, Hellman Ziv, Sherill-Rofe Dana
School of Social Sciences, University of Manchester, Arthur Lewis building, Manchester M139PL, UK.
Department of Economics, Bar Ilan University, Ramat Gan 5290002, Israel.
J Theor Biol. 2017 Aug 7;426:67-81. doi: 10.1016/j.jtbi.2017.05.018. Epub 2017 May 16.
The question of 'why sex' has long been a puzzle. The randomness of recombination, which potentially produces low fitness progeny, contradicts notions of fitness landscape hill climbing. We use the concept of evolution as an algorithm for learning unpredictable environments to provide a possible answer. While sex and asex both implement similar machine learning no-regret algorithms in the context of random samples that are small relative to a vast genotype space, the algorithm of sex constitutes a more efficient goal-directed walk through this space. Simulations indicate this gives sex an evolutionary advantage, even in stable, unchanging environments. Asexual populations rapidly reach a fitness plateau, but the learning aspect of the no-regret algorithm most often eventually boosts the fitness of sexual populations past the maximal viability of corresponding asexual populations. In this light, the randomness of sexual recombination is not a hindrance but a crucial component of the 'sampling for learning' algorithm of sexual reproduction.
“为什么有性生殖”这个问题长期以来一直是个谜。重组的随机性可能会产生适应性较低的后代,这与适应性景观爬坡的概念相矛盾。我们将进化的概念视为一种用于学习不可预测环境的算法,以提供一个可能的答案。虽然有性生殖和无性生殖在相对于庞大基因型空间而言较小的随机样本背景下都实施了类似的无悔机器学习算法,但有性生殖的算法构成了在这个空间中更高效的目标导向式探索。模拟表明,这赋予了有性生殖一种进化优势,即使在稳定不变的环境中也是如此。无性种群很快就会达到适应性高原,但无悔算法的学习方面最终往往会提高有性种群的适应性,使其超过相应无性种群的最大生存能力。据此,有性重组的随机性并非障碍,而是有性生殖“学习抽样”算法的关键组成部分。