Suppr超能文献

确定影响聚合物纳米颗粒中蛋白质可控释放的主要驱动力。

Determining dominant driving forces affecting controlled protein release from polymeric nanoparticles.

作者信息

Smith Josh, Sprenger Kayla G, Liao Rick, Joseph Andrea, Nance Elizabeth, Pfaendtner Jim

机构信息

Department of Chemical Engineering, University of Washington, 105 Benson Hall, 3781 Okanogan Lane NE, Seattle, Washington 98195.

出版信息

Biointerphases. 2017 May 19;12(2):02D412. doi: 10.1116/1.4983154.

Abstract

Enzymes play a critical role in many applications in biology and medicine as potential therapeutics. One specific area of interest is enzyme encapsulation in polymer nanostructures, which have applications in drug delivery and catalysis. A detailed understanding of the mechanisms governing protein/polymer interactions is crucial for optimizing the performance of these complex systems for different applications. Using a combined computational and experimental approach, this study aims to quantify the relative importance of molecular and mesoscale driving forces to protein release from polymeric nanoparticles. Classical molecular dynamics (MD) simulations have been performed on bovine serum albumin (BSA) in aqueous solutions with oligomeric surrogates of poly(lactic-co-glycolic acid) copolymer, poly(styrene)-poly(lactic acid) copolymer, and poly(lactic acid). The simulated strength and location of polymer surrogate binding to the surface of BSA have been compared to experimental BSA release rates from nanoparticles formulated with these same polymers. Results indicate that the self-interaction tendencies of the polymer surrogates and other macroscale properties may play governing roles in protein release. Additional MD simulations of BSA in solution with poly(styrene)-acrylate copolymer reveal the possibility of enhanced control over the enzyme encapsulation process by tuning polymer self-interaction. Last, the authors find consistent protein surface binding preferences across simulations performed with polymer surrogates of varying lengths, demonstrating that protein/polymer interactions can be understood in part by studying the interactions and affinity of proteins with small polymer surrogates in solution.

摘要

酶作为潜在的治疗剂,在生物学和医学的许多应用中发挥着关键作用。一个特别感兴趣的领域是将酶封装在聚合物纳米结构中,其在药物递送和催化方面具有应用。详细了解控制蛋白质/聚合物相互作用的机制对于优化这些复杂系统在不同应用中的性能至关重要。本研究采用计算和实验相结合的方法,旨在量化分子和介观尺度驱动力对蛋白质从聚合物纳米颗粒中释放的相对重要性。已对牛血清白蛋白(BSA)在含有聚(乳酸-共-乙醇酸)共聚物、聚(苯乙烯)-聚(乳酸)共聚物和聚(乳酸)的低聚物替代物的水溶液中进行了经典分子动力学(MD)模拟。已将聚合物替代物与BSA表面结合的模拟强度和位置与用这些相同聚合物配制的纳米颗粒的实验性BSA释放速率进行了比较。结果表明,聚合物替代物的自相互作用趋势和其他宏观性质可能在蛋白质释放中起主导作用。对BSA在含有聚(苯乙烯)-丙烯酸酯共聚物的溶液中的额外MD模拟揭示了通过调节聚合物自相互作用来增强对酶封装过程控制的可能性。最后,作者发现在使用不同长度的聚合物替代物进行的模拟中,蛋白质表面结合偏好是一致的,这表明通过研究蛋白质与溶液中小聚合物替代物的相互作用和亲和力,可以部分理解蛋白质/聚合物相互作用。

相似文献

本文引用的文献

9
Polymers for drug delivery systems.药物输送系统用聚合物。
Annu Rev Chem Biomol Eng. 2010;1:149-73. doi: 10.1146/annurev-chembioeng-073009-100847.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验