Zhao Xiao-Juan, Yang Yan-Zi, Zheng Yan-Jing, Wang Shan-Chun, Gu Hong-Mei, Pan Ying, Wang Shui-Juan, Xu Hong-Jiang, Kong Ling-Dong
State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
Drug Screening and Evaluation Department of R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing 210023, PR China.
Eur J Pharmacol. 2017 Aug 15;809:141-150. doi: 10.1016/j.ejphar.2017.05.032. Epub 2017 May 17.
Magnesium isoglycyrrhizinate as a hepatoprotective agent possesses immune modulation and anti-inflammation, and treats liver diseases. But its effects on immunological-inflammatory and metabolic profiles for metabolic syndrome with liver injury and underlying potential mechanisms are not fully understood. In this study, magnesium isoglycyrrhizinate alleviated liver inflammation and lipid accumulation in fructose-fed rats with metabolic syndrome. It also suppressed hepatic inflammatory signaling activation by reducing protein levels of phosphorylation of nuclear factor-kappa B p65 (p-NF-κB p65), inhibitor of nuclear factor kappa-B kinase α/β (p-IKKα/β) and inhibitor of NF-κB α (p-IκBα) as well as nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and Caspase-1 in rats, being consistent with its reduction of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 levels. Furthermore, magnesium isoglycyrrhizinate modulated lipid metabolism-related genes characterized by up-regulating peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyl transferase-1 (CPT-1), and down-regulating sensor for fatty acids to control-1 (SREBP-1) and stearoyl-CoA desaturase 1 (SCD-1) in the liver of fructose-fed rats, resulting in the reduction of triglyceride and total cholesterol levels. These effective actions were further confirmed in fructose-exposed BRL-3A and HepG2 cells. The molecular mechanisms underpinning these observations suggest that magnesium isoglycyrrhizinate may inhibit NF-κB/NLRP3 inflammasome activation to reduce immunological-inflammatory response, which in turn may prevent liver lipid metabolic disorder and accumulation under high fructose condition. Thus, blockade of NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder by magnesium isoglycyrrhizinate may be the potential therapeutic approach for improving fructose-induced liver injury with metabolic syndrome in clinic.
异甘草酸镁作为一种肝脏保护剂,具有免疫调节和抗炎作用,可用于治疗肝脏疾病。但其对伴有肝损伤的代谢综合征的免疫炎症和代谢谱的影响及其潜在机制尚未完全明确。在本研究中,异甘草酸镁减轻了果糖喂养的代谢综合征大鼠的肝脏炎症和脂质蓄积。它还通过降低大鼠中核因子-κB p65(p-NF-κB p65)、核因子κB激酶α/β(p-IKKα/β)和核因子κBα抑制剂(p-IκBα)以及核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)、凋亡相关斑点样蛋白(ASC)和半胱天冬酶-1的磷酸化蛋白水平,抑制肝脏炎症信号激活,这与其降低白细胞介素-1β(IL-1β)、肿瘤坏死因子-α(TNF-α)和IL-6水平一致。此外,异甘草酸镁调节脂质代谢相关基因,其特征在于上调果糖喂养大鼠肝脏中的过氧化物酶体增殖物激活受体-α(PPAR-α)和肉碱棕榈酰转移酶-1(CPT-1),并下调脂肪酸控制-1传感器(SREBP-1)和硬脂酰辅酶A去饱和酶1(SCD-1),从而导致甘油三酯和总胆固醇水平降低。这些有效作用在果糖处理的BRL-3A和HepG2细胞中得到进一步证实。这些观察结果的分子机制表明,异甘草酸镁可能抑制NF-κB/NLRP3炎性小体激活以减少免疫炎症反应,这反过来可能预防高果糖条件下的肝脏脂质代谢紊乱和蓄积。因此,异甘草酸镁阻断NF-κB/NLRP3炎性小体激活和脂质代谢紊乱可能是临床上改善果糖诱导的伴有代谢综合征的肝损伤的潜在治疗方法。