Castro-Abril H A, Guevara J M, Moncayo M A, Shefelbine S J, Barrera L A, Garzón-Alvarado D A
Grupo de Modelado y Métodos Numéricos en Ingeniería (GNUM), Departamento de Ingeniería Mecánica, Universidad Nacional de Colombia, Bogotá, Colombia; Laboratorio de Biomiméticos, Grupo de Mecanobiología de Órganos y Tejidos, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia.
Instituto de errores Innatos, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
J Theor Biol. 2017 Sep 7;428:87-97. doi: 10.1016/j.jtbi.2017.05.015. Epub 2017 May 17.
The growth plate is the responsible for longitudinal bone growth. It is a cartilaginous structure formed by chondrocytes that are continuously undergoing a differentiation process that starts with a highly proliferative state, followed by cellular hypertrophy, and finally tissue ossification. Within the growth plate chondrocytes display a characteristic columnar organization that potentiates longitudinal growth. Both chondrocyte organization and hypertrophy are highly regulated processes influenced by biochemical and mechanical stimuli. These processes have been studied mainly using in vivo models, although there are few computational approaches focused on the rate of ossification rather than events at cellular level. Here, we developed a model of cellular behavior integrating biochemical and structural factors in a single column of cells in the growth plate. In our model proliferation and hypertrophy were controlled by biochemical regulatory loop formed between Ihh and PTHrP (modeled as a set of reaction-diffusion equations), while cell growth was controlled by mechanical loading. We also examined the effects of static loading. The model reproduced the proliferation and hypertrophy of chondrocytes in organized columns. This model constitutes a first step towards the development of mechanobiological models that can be used to study biochemical interactions during endochondral ossification.
生长板负责骨骼的纵向生长。它是一种由软骨细胞形成的软骨结构,软骨细胞不断经历一个分化过程,该过程始于高度增殖状态,接着是细胞肥大,最后是组织骨化。在生长板内,软骨细胞呈现出一种特征性的柱状排列,这种排列增强了纵向生长。软骨细胞的排列和肥大都是受生化和机械刺激影响的高度调控过程。这些过程主要通过体内模型进行研究,尽管有一些计算方法关注的是骨化速率而非细胞水平的事件。在此,我们开发了一个细胞行为模型,将生化和结构因素整合到生长板中单个细胞柱内。在我们的模型中,增殖和肥大由Ihh和PTHrP之间形成的生化调节环控制(建模为一组反应扩散方程),而细胞生长由机械负荷控制。我们还研究了静态负荷的影响。该模型再现了有组织的细胞柱中软骨细胞的增殖和肥大。这个模型是朝着开发可用于研究软骨内骨化过程中生化相互作用的力学生物学模型迈出的第一步。