Suppr超能文献

骺软骨内成骨的生物力学建模:实验与计算分析。

Mechanobiological modeling of endochondral ossification: an experimental and computational analysis.

机构信息

Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia.

Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Carrera 30 No 45-03 Edificio 407, Oficina 202A, Bogotá, Colombia.

出版信息

Biomech Model Mechanobiol. 2018 Jun;17(3):853-875. doi: 10.1007/s10237-017-0997-0. Epub 2018 Jan 10.

Abstract

Long bone formation starts early during embryonic development through a process known as endochondral ossification. This is a highly regulated mechanism that involves several mechanical and biochemical factors. Because long bone development is an extremely complex process, it is unclear how biochemical regulation is affected when dynamic loads are applied, and also how the combination of mechanical and biochemical factors affect the shape acquired by the bone during early development. In this study, we develop a mechanobiological model combining: (1) a reaction-diffusion system to describe the biochemical process and (2) a poroelastic model to determine the stresses and fluid flow due to loading. We simulate endochondral ossification and the change in long bone shapes during embryonic stages. The mathematical model is based on a multiscale framework, which consisted in computing the evolution of the negative feedback loop between Ihh/PTHrP and the diffusion of VEGF molecule (on the order of days) and dynamic loading (on the order of seconds). We compare our morphological predictions with the femurs of embryonic mice. The results obtained from the model demonstrate that pattern formation of Ihh, PTHrP and VEGF predict the development of the main structures within long bones such as the primary ossification center, the bone collar, the growth fronts and the cartilaginous epiphysis. Additionally, our results suggest high load pressures and frequencies alter biochemical diffusion and cartilage formation. Our model incorporates the biochemical and mechanical stimuli and their interaction that influence endochondral ossification during embryonic growth. The mechanobiochemical framework allows us to probe the effects of molecular events and mechanical loading on development of bone.

摘要

长骨的形成始于胚胎发育早期,通过一种称为软骨内骨化的过程。这是一个高度调节的机制,涉及几个机械和生化因素。由于长骨发育是一个极其复杂的过程,目前还不清楚当动态载荷施加时,生化调节是如何受到影响的,以及机械和生化因素的组合如何影响早期发育过程中骨骼获得的形状。在这项研究中,我们开发了一个机械生物模型,将(1)一个反应扩散系统来描述生化过程和(2)一个多孔弹性模型来确定加载引起的应力和流体流动结合起来。我们模拟了软骨内骨化和胚胎阶段长骨形状的变化。该数学模型基于一个多尺度框架,该框架包括计算 Ihh/PTHrP 之间的负反馈环和 VEGF 分子扩散(以天为单位)和动态加载(以秒为单位)的演化。我们将形态预测与胚胎小鼠的股骨进行了比较。模型的结果表明,Ihh、PTHrP 和 VEGF 的模式形成预测了长骨内主要结构的发育,如初级骨化中心、骨领、生长前沿和软骨骺。此外,我们的结果表明,高负荷压力和频率会改变生化扩散和软骨形成。我们的模型包含了影响胚胎生长中软骨内骨化的生化和机械刺激及其相互作用。机械生物化学框架使我们能够探测分子事件和机械加载对骨骼发育的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验