Gutiérrez García María Angeles, Martín Ruiz María Luisa, Rivera Diego, Vadillo Laura, Valero Duboy Miguel Angel
Universidad Autónoma de Madrid, Departamento de Didáctica y Teoría de la Educación, Facultad de Formación de Profesorado y Educación, Madrid, Spain.
Grupo de Investigación Tecnologías para la sociedad de la información y el conocimiento (T>SIC), Departamento de Ingeniería Telemática y Electrónica, Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain.
J Med Internet Res. 2017 May 19;19(5):e171. doi: 10.2196/jmir.7533.
EDUCERE ("Ubiquitous Detection Ecosystem to Care and Early Stimulation for Children with Developmental Disorders") is an ecosystem for ubiquitous detection, care, and early stimulation of children with developmental disorders. The objectives of this Spanish government-funded research and development project are to investigate, develop, and evaluate innovative solutions to detect changes in psychomotor development through the natural interaction of children with toys and everyday objects, and perform stimulation and early attention activities in real environments such as home and school. Thirty multidisciplinary professionals and three nursery schools worked in the EDUCERE project between 2014 and 2017 and they obtained satisfactory results. Related to EDUCERE, we found studies based on providing networks of connected smart objects and the interaction between toys and social networks.
This research includes the design, implementation, and validation of an EDUCERE smart toy aimed to automatically detect delays in psychomotor development. The results from initial tests led to enhancing the effectiveness of the original design and deployment. The smart toy, based on stackable cubes, has a data collector module and a smart system for detection of developmental delays, called the EDUCERE developmental delay screening system (DDSS).
The pilot study involved 65 toddlers aged between 23 and 37 months (mean=29.02, SD 3.81) who built a tower with five stackable cubes, designed by following the EDUCERE smart toy model. As toddlers made the tower, sensors in the cubes sent data to a collector module through a wireless connection. All trials were video-recorded for further analysis by child development experts. After watching the videos, experts scored the performance of the trials to compare and fine-tune the interpretation of the data automatically gathered by the toy-embedded sensors.
Judges were highly reliable in an interrater agreement analysis (intraclass correlation 0.961, 95% CI 0.937-0.967), suggesting that the process was successful to separate different levels of performance. A factor analysis of collected data showed that three factors, trembling, speed, and accuracy, accounted for 76.79% of the total variance, but only two of them were predictors of performance in a regression analysis: accuracy (P=.001) and speed (P=.002). The other factor, trembling (P=.79), did not have a significant effect on this dependent variable.
The EDUCERE DDSS is ready to use the regression equation obtained for the dependent variable "performance" as an algorithm for the automatic detection of psychomotor developmental delays. The results of the factor analysis are valuable to simplify the design of the smart toy by taking into account only the significant variables in the collector module. The fine-tuning of the toy process module will be carried out by following the specifications resulting from the analysis of the data to improve the efficiency and effectiveness of the product.
EDUCERE(“发育障碍儿童的普遍检测、护理和早期刺激生态系统”)是一个用于发育障碍儿童的普遍检测、护理和早期刺激的生态系统。这个由西班牙政府资助的研发项目的目标是研究、开发和评估创新解决方案,通过儿童与玩具及日常物品的自然互动来检测心理运动发育的变化,并在家庭和学校等实际环境中开展刺激和早期关注活动。2014年至2017年期间,30名多学科专业人员和3所幼儿园参与了EDUCERE项目,他们取得了令人满意的成果。与EDUCERE相关的研究包括基于提供连接的智能物体网络以及玩具与社交网络之间的互动。
本研究包括一款EDUCERE智能玩具的设计、实施和验证,旨在自动检测心理运动发育延迟。初步测试结果促使对原始设计和部署的有效性进行了改进。这款基于可堆叠立方体的智能玩具具有一个数据收集器模块和一个用于检测发育延迟的智能系统,称为EDUCERE发育延迟筛查系统(DDSS)。
试点研究涉及65名年龄在23至37个月之间(平均年龄=29.02,标准差3.81)的幼儿,他们按照EDUCERE智能玩具模型搭建了一座由五个可堆叠立方体组成的塔。当幼儿搭建塔时,立方体中的传感器通过无线连接将数据发送到收集器模块。所有试验都进行了视频录制,以供儿童发育专家进一步分析。观看视频后,专家对试验表现进行评分,以比较和微调由玩具内置传感器自动收集的数据的解释。
在评分者间一致性分析中,评判者的可靠性很高(组内相关系数0.961,95%置信区间0.937 - 0.967),这表明该过程成功地区分了不同水平的表现。对收集数据的因子分析表明,三个因子,即颤抖、速度和准确性,占总方差的76.79%,但在回归分析中只有两个是表现的预测因子:准确性(P = 0.001)和速度(P = 0.002)。另一个因子,颤抖(P = 0.79),对这个因变量没有显著影响。
EDUCERE DDSS已准备好将为因变量“表现”获得的回归方程用作自动检测心理运动发育延迟的算法。因子分析的结果对于通过仅考虑收集器模块中的显著变量来简化智能玩具的设计很有价值。将根据数据分析得出的规格对玩具过程模块进行微调,以提高产品的效率和有效性。