Suppr超能文献

利用可见近红外和中红外技术预测高山景观土壤芯中的有机碳。

Organic carbon prediction in soil cores using VNIR and MIR techniques in an alpine landscape.

机构信息

Institute of Agricultural Remote Sensing & Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 31005, China.

Department of Resources and the Environment, XiZang Agriculture and Animal Husbandry College, Linzhi, Tibet, 860114, China.

出版信息

Sci Rep. 2017 May 19;7(1):2144. doi: 10.1038/s41598-017-02061-z.

Abstract

Diffuse reflectance spectroscopy (DRS), including visible and near-infrared (VNIR) and mid-infrared (MIR) radiation, is a rapid, accurate and cost-effective technique for estimating soil organic carbon (SOC). We examined 24 soil cores (0-100 cm) from the Sygera Mountains on the Qinghai-Tibet Plateau, considering field-moist intact VNIR, air-dried ground VNIR and air-dried ground MIR spectra at 5-cm intervals. Preprocessed spectra were used to predict the SOC in the soil cores using partial least squares regression (PLSR) and a support vector machine (SVM). The SVM models performed better with three predictors, with the ratio of performance to inter-quartile distance (RPIQ) and R values typically exceeding 1.74 and 0.73, respectively. The SVM using the DRS technique indicated accurate predictive results of SOC in each core. The RPIQ values of the shrub meadow, forest and total dataset prediction using air-dried ground VNIR were 1.97, 2.68 and 1.99, respectively; the values using field-moist intact VNIR were 1.95, 2.07 and 1.76 and those using air-dried ground MIR were 1.78, 1.96 and 1.74, respectively. We conclude that the DRS technique is an efficient and rapid method for SOC prediction and has the potential for dynamic monitoring of SOC stock density on the Qinghai-Tibet Plateau.

摘要

漫反射光谱(DRS),包括可见和近红外(VNIR)和中红外(MIR)辐射,是一种快速、准确和具有成本效益的技术,可用于估算土壤有机碳(SOC)。我们研究了青藏高原色格则山上的 24 个土壤芯(0-100 cm),考虑了现场潮湿的完整 VNIR、风干地面 VNIR 和风干地面 MIR 光谱,每隔 5 cm 采集一次。使用偏最小二乘回归(PLSR)和支持向量机(SVM),使用预处理光谱来预测土壤芯中的 SOC。SVM 模型使用三个预测因子表现更好,性能与四分位距比(RPIQ)和 R 值通常分别超过 1.74 和 0.73。使用 DRS 技术的 SVM 表明 SOC 在每个核心中的预测结果都很准确。使用风干地面 VNIR 对灌木草地、森林和总数据集进行预测的 RPIQ 值分别为 1.97、2.68 和 1.99;使用现场潮湿完整 VNIR 的 RPIQ 值分别为 1.95、2.07 和 1.76,使用风干地面 MIR 的 RPIQ 值分别为 1.78、1.96 和 1.74。我们得出结论,DRS 技术是一种高效、快速的 SOC 预测方法,具有在青藏高原上动态监测 SOC 储量密度的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c86/5438382/dbb9aee18b9d/41598_2017_2061_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验