Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
J Chem Phys. 2017 May 21;146(19):194109. doi: 10.1063/1.4983395.
For a given many-electron molecule, it is possible to define a corresponding one-electron Schrödinger equation, using potentials derived from simple atomic densities, whose solution predicts fairly accurate molecular orbitals for single- and multi-determinant wavefunctions for the molecule. The energy is not predicted and must be evaluated by calculating Coulomb and exchange interactions over the predicted orbitals. Potentials are found by minimizing the energy of predicted wavefunctions. There exist slightly less accurate average potentials for first-row atoms that can be used without modification in different molecules. For a test set of molecules representing different bonding environments, these average potentials give wavefunctions with energies that deviate from exact self-consistent field or configuration interaction energies by less than 0.08 eV and 0.03 eV per bond or valence electron pair, respectively.
对于给定的多电子分子,可以定义相应的单电子薛定谔方程,使用简单原子密度导出的位势,其解可以预测分子的单和多行列式波函数的相当准确的分子轨道。能量无法预测,必须通过计算预测轨道上的库仑和交换相互作用来评估。通过最小化预测波函数的能量来找到位势。对于可以在不同分子中未经修改就使用的第一行原子的略不准确的平均位势也存在。对于一组代表不同成键环境的分子的测试集,这些平均位势给出的波函数的能量与精确自洽场或组态相互作用能量的偏差小于 0.08 eV 和 0.03 eV 每键或价电子对,分别。