Zope Rajendra R, Dunlap Brett I
Department of Chemistry, George Washington University, Washington, DC 20052, USA.
J Chem Phys. 2006 Jan 28;124(4):044107. doi: 10.1063/1.2161176.
Our recent formulation of the analytic and variational Slater-Roothaan (SR) method, which uses Gaussian basis sets to variationally express the molecular orbitals, electron density, and the one-body effective potential of density-functional theory, is reviewed. Variational fitting can be extended to the resolution of identity method, where variationality then refers to the error in each two-electron integral and not to the total energy. However, a Taylor-series analysis shows that all analytic ab initio energies calculated with variational fits to two-electron integrals are stationary. It is proposed that the appropriate fitting functions be charge neutral and that all ab initio energies be evaluated using two-center fits of the two-electron integrals. The SR method has its root in Slater's Xalpha method and permits an arbitrary scaling of the Slater-Gàspàr-Kohn-Sham exchange-correlation potential around each atom in the system. The scaling factors are Slater's exchange parameters alpha. Of several ways of choosing these parameters, two most obvious are the Hartree-Fock (HF) alpha(HF) values and the exact atomic alpha(EA) values. The former are obtained by equating the self-consistent Xalpha energy and the HF energies, while the latter set reproduces exact atomic energies. In this work, we examine the performance of the SR method for predicting atomization energies, bond distances, and ionization potentials using the two sets of alpha parameters. The atomization energies are calculated for the extended G2 set of 148 molecules for different basis-set combinations. The mean error (ME) and mean absolute error (MAE) in atomization energies are about 25 and 33 kcal/mol, respectively, for the exact atomic alpha(EA) values. The HF values of exchange parameters alpha(HF) give somewhat better performance for the atomization energies with ME and MAE being about 15 and 26 kcal/mol, respectively. While both sets give performance better than the local-density approximation or the HF theory, the errors in atomization energy are larger than the target chemical accuracy. To further improve the performance of the SR method for atomization energies, a new set of alpha values is determined by minimizing the MAE in atomization energies of 148 molecules. This new set gives atomization energies half as large (MAE approximately 14.5 kcal/mol) and that are slightly better than those obtained by one of the most widely used generalized-gradient approximations. Further improvements in atomization energies require going beyond Slater's functional form for exchange employed in this work to allow exchange-correlation interactions between electrons of different spins. The MAE in ionization potentials of 49 atoms and molecules is about 0.5 eV and that in bond distances of 27 molecules is about 0.02 A. The overall good performance of the computationally efficient SR method using any reasonable set of alpha values makes it a promising method for study of large systems.
我们回顾了最近提出的解析变分斯莱特 - 罗特汉(SR)方法,该方法使用高斯基组变分地表示分子轨道、电子密度以及密度泛函理论中的一体有效势。变分拟合可以扩展到单位分解方法,此时变分性指的是每个双电子积分中的误差,而非总能量。然而,泰勒级数分析表明,通过对双电子积分进行变分拟合计算得到的所有解析从头算能量都是稳定的。建议合适的拟合函数应是电荷中性的,并且所有从头算能量都应使用双电子积分的双中心拟合来评估。SR方法源于斯莱特的Xα方法,并允许对系统中每个原子周围的斯莱特 - 加斯帕尔 - 科恩 - 沙姆交换相关势进行任意缩放。缩放因子是斯莱特的交换参数α。在选择这些参数的几种方法中,最明显的两种是哈特里 - 福克(HF)的α(HF)值和精确原子的α(EA)值。前者通过使自洽的Xα能量与HF能量相等来获得,而后者能重现精确的原子能量。在这项工作中,我们使用这两组α参数研究了SR方法在预测原子化能、键长和电离势方面的性能。针对148个分子的扩展G2集,计算了不同基组组合下的原子化能。对于精确原子的α(EA)值,原子化能的平均误差(ME)和平均绝对误差(MAE)分别约为25和33千卡/摩尔。交换参数α(HF)的HF值在原子化能方面表现稍好,ME和MAE分别约为15和26千卡/摩尔。虽然这两组值的性能都优于局域密度近似或HF理论,但原子化能的误差大于目标化学精度。为了进一步提高SR方法在原子化能方面的性能,通过最小化148个分子的原子化能的MAE来确定一组新的α值。这组新值给出的原子化能误差减半(MAE约为14.5千卡/摩尔),并且略优于最广泛使用的广义梯度近似之一所得到的结果。要进一步提高原子化能,需要超越本文中用于交换的斯莱特泛函形式,以允许不同自旋电子之间的交换相关相互作用。49个原子和分子的电离势的MAE约为0.5电子伏特,27个分子的键长的MAE约为0.02埃。使用任何合理的α值集的计算效率高的SR方法的整体良好性能使其成为研究大型系统的一种有前途的方法。