Suppr超能文献

使用软先验正则化电阻抗断层成像技术进行乳腺癌成像的体模实验。

Phantom experiments using soft-prior regularization EIT for breast cancer imaging.

作者信息

Murphy Ethan K, Mahara Aditya, Wu Xiaotian, Halter Ryan J

机构信息

Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States of America.

出版信息

Physiol Meas. 2017 Jun;38(6):1262-1277. doi: 10.1088/1361-6579/aa691b.

Abstract

OBJECTIVE

A soft-prior regularization (SR) electrical impedance tomography (EIT) technique for breast cancer imaging is described, which shows an ability to accurately reconstruct tumor/inclusion conductivity values within a dense breast model investigated using a cylindrical and a breast-shaped tank.

APPROACH

The SR-EIT method relies on knowing the spatial location of a suspicious lesion initially detected from a second imaging modality. Standard approaches (using Laplace smoothing and total variation regularization) without prior structural information are unable to accurately reconstruct or detect the tumors. The soft-prior approach represents a very significant improvement to these standard approaches, and has the potential to improve conventional imaging techniques, such as automated whole breast ultrasound (AWB-US), by providing electrical property information of suspicious lesions to improve AWB-US's ability to discriminate benign from cancerous lesions.

MAIN RESULTS

Specifically, the best soft-regularization technique found average absolute tumor/inclusion errors of 0.015 S m for the cylindrical test and 0.055 S m and 0.080 S m for the breast-shaped tank for 1.8 cm and 2.5 cm inclusions, respectively. The standard approaches were statistically unable to distinguish the tumor from the mammary gland tissue. An analysis of false tumors (benign suspicious lesions) provides extra insight into the potential and challenges EIT has for providing clinically relevant information.

SIGNIFICANCE

The ability to obtain accurate conductivity values of a suspicious lesion (>1.8 cm) detected from another modality (e.g. AWB-US) could significantly reduce false positives and result in a clinically important technology.

摘要

目的

描述一种用于乳腺癌成像的软先验正则化(SR)电阻抗断层成像(EIT)技术,该技术显示出能够在使用圆柱形和乳房形状水槽研究的致密乳房模型中准确重建肿瘤/内含物电导率值的能力。

方法

SR-EIT方法依赖于最初从第二种成像模态检测到的可疑病变的空间位置。没有先验结构信息的标准方法(使用拉普拉斯平滑和总变差正则化)无法准确重建或检测肿瘤。软先验方法是对这些标准方法的一项非常显著的改进,并且有可能通过提供可疑病变的电学特性信息来改善传统成像技术,如自动全乳腺超声(AWB-US),以提高AWB-US区分良性和恶性病变的能力。

主要结果

具体而言,对于圆柱形测试,最佳软正则化技术发现对于1.8厘米和2.5厘米的内含物,平均绝对肿瘤/内含物误差分别为0.015 S/m和对于乳房形状水槽为0.055 S/m和0.080 S/m。标准方法在统计学上无法区分肿瘤和乳腺组织。对假肿瘤(良性可疑病变)的分析为EIT提供临床相关信息的潜力和挑战提供了额外的见解。

意义

从另一种模态(如AWB-US)检测到的可疑病变(>1.8厘米)获得准确电导率值的能力可以显著减少假阳性,并产生一项具有临床重要性的技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验