Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Korea.
ACS Nano. 2017 Jun 27;11(6):6218-6224. doi: 10.1021/acsnano.7b02322. Epub 2017 May 25.
We demonstrate here an embedded metal electrode for highly efficient organic-inorganic hybrid nanowire solar cells. The electrode proposed here is an effective alternative to the conventional bus and finger electrode which leads to a localized short circuit at a direct Si/metal contact and has a poor collection efficiency due to a nonoptimized electrode design. In our design, a Ag/SiO electrode is embedded into a Si substrate while being positioned between Si nanowire arrays underneath poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), facilitating suppressed recombination at the Si/Ag interface and notable improvements in the fabrication reproducibility. With an optimized microgrid electrode, our 1 cm hybrid solar cells exhibit a power conversion efficiency of up to 16.1% with an open-circuit voltage of 607 mV and a short circuit current density of 34.0 mA/cm. This power conversion efficiency is more than twice as high as that of solar cells using a conventional electrode (8.0%). The microgrid electrode significantly minimizes the optical and electrical losses. This reproducibly yields a superior quantum efficiency of 99% at the main solar spectrum wavelength of 600 nm. In particular, our solar cells exhibit a significant increase in the fill factor of 78.3% compared to that of a conventional electrode (61.4%); this is because of the drastic reduction in the metal/contact resistance of the 1 μm-thick Ag electrode. Hence, the use of our embedded microgrid electrode in the construction of an ideal carrier collection path presents an opportunity in the development of highly efficient organic-inorganic hybrid solar cells.
我们在此展示了一种用于高效有机-无机杂化纳米线太阳能电池的嵌入式金属电极。与传统的总线和指状电极相比,这里提出的电极是一种有效的替代方案,因为传统的总线和指状电极在 Si/金属直接接触处会导致局部短路,并且由于电极设计不合理,收集效率也很差。在我们的设计中,Ag/SiO 电极被嵌入到 Si 衬底中,同时位于 Si 纳米线阵列下方的聚(3,4-亚乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)之间,这有助于抑制 Si/Ag 界面的复合,并显著提高了制造重复性。通过优化微电网电极,我们的 1cm 混合太阳能电池的功率转换效率高达 16.1%,开路电压为 607mV,短路电流密度为 34.0mA/cm。与使用传统电极的太阳能电池(8.0%)相比,这种功率转换效率提高了一倍多。微电网电极显著减小了光学和电学损耗。这使得在主太阳能光谱波长 600nm 处的量子效率高达 99%。特别是,与传统电极相比,我们的太阳能电池的填充因子显著增加了 78.3%;这是因为 1μm 厚的 Ag 电极的金属/接触电阻大大降低。因此,在构建理想的载流子收集路径时使用我们的嵌入式微电网电极为高效有机-无机杂化太阳能电池的发展提供了机会。