Arun N K, Mohan B M
Department of Electrical Engineering, Indian Institute of Technology, Kharagpur 721302, India.
ISA Trans. 2017 Sep;70:16-29. doi: 10.1016/j.isatra.2017.04.023. Epub 2017 May 19.
The mathematical models reported in the literature so far have been found using Center of Sums (CoS) defuzzification method only. It appears that no one has found models using Center of Area (CoA) or Center of Gravity (CoG) defuzzification method. Although there have been some works reported to deal with modeling of fuzzy controllers via Centroid method, all of them have in fact used CoS method only. In this paper, for the first time mathematical models of the simplest Mamdani type fuzzy Proportional Integral (PI)/Proportional Derivative (PD) controllers via CoG defuzzification are presented. L-type and Γ-type membership functions over different Universes of Discourse (UoDs) are considered for the input variables. L-type, Π-type and Γ-type membership functions are considered for the output variable. Three linear fuzzy control rules relating all four input fuzzy sets to three output fuzzy sets are chosen. Two triangular norms namely Algebraic Product (AP) and Minimum (Min), Maximum (Max) triangular co-norm, and two inference methods, Larsen Product (LP) and Mamdani Minimum (MM), are used. Properties of the models are studied. Stability analysis of closed-loop systems containing one of these controller models in the loop is done using the Small Gain theorem. Since digital controllers are implemented using digital processors, computational and memory requirements of these fuzzy controllers and conventional (nonfuzzy) controllers are compared. A rough estimate of the computational time taken by the digital computer while implementing any of these discrete-time fuzzy controllers is given. Two nonlinear plants are considered to show the superiority of the simplest fuzzy controller obtained using CoA or CoG defuzzification method over the simplest fuzzy controller obtained using CoS method and reported recently. Real-time implementation of one of the developed controller models is done on coupled tank experimental setup to show the feasibility of the developed model.
到目前为止,文献中报道的数学模型都是仅使用和中心(CoS)去模糊化方法得到的。似乎还没有人找到使用面积中心(CoA)或重心(CoG)去模糊化方法的模型。尽管有一些工作报道了通过质心方法对模糊控制器进行建模,但实际上所有这些工作都仅使用了CoS方法。在本文中,首次提出了通过CoG去模糊化得到的最简单的Mamdani型模糊比例积分(PI)/比例微分(PD)控制器的数学模型。对于输入变量,考虑了不同论域(UoD)上的L型和Γ型隶属函数。对于输出变量,考虑了L型、Π型和Γ型隶属函数。选择了将所有四个输入模糊集与三个输出模糊集相关联的三条线性模糊控制规则。使用了两种三角范数,即代数积(AP)和最小值(Min),最大值(Max)三角余范数,以及两种推理方法,Larsen积(LP)和Mamdani最小值(MM)。研究了模型的性质。使用小增益定理对包含这些控制器模型之一的闭环系统进行稳定性分析。由于数字控制器是使用数字处理器实现的,因此比较了这些模糊控制器和传统(非模糊)控制器的计算和内存需求。给出了数字计算机在实现任何这些离散时间模糊控制器时所花费计算时间的粗略估计。考虑了两个非线性对象,以展示使用CoA或CoG去模糊化方法得到的最简单模糊控制器相对于最近报道的使用CoS方法得到的最简单模糊控制器的优越性。在耦合水箱实验装置上对所开发的控制器模型之一进行了实时实现,以展示所开发模型的可行性。