Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany.
Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):6034-6039. doi: 10.1073/pnas.1704496114. Epub 2017 May 22.
Crystal structures of enzymes are indispensable to understanding their mechanisms on a molecular level. It, however, remains challenging to determine which structures are adopted in solution, especially for dynamic complexes. Here, we study the bilobed decapping enzyme Dcp2 that removes the 5' cap structure from eukaryotic mRNA and thereby efficiently terminates gene expression. The numerous Dcp2 structures can be grouped into six states where the domain orientation between the catalytic and regulatory domains significantly differs. Despite this wealth of structural information it is not possible to correlate these states with the catalytic cycle or the activity of the enzyme. Using methyl transverse relaxation-optimized NMR spectroscopy, we demonstrate that only three of the six domain orientations are present in solution, where Dcp2 adopts an open, a closed, or a catalytically active state. We show how mRNA substrate and the activator proteins Dcp1 and Edc1 influence the dynamic equilibria between these states and how this modulates catalytic activity. Importantly, the active state of the complex is only stably formed in the presence of both activators and the mRNA substrate or the m7GDP decapping product, which we rationalize based on a crystal structure of the Dcp1:Dcp2:Edc1:m7GDP complex. Interestingly, we find that the activating mechanisms in Dcp2 also result in a shift of the substrate specificity from bacterial to eukaryotic mRNA.
酶的晶体结构对于理解其分子水平的机制是不可或缺的。然而,确定哪些结构在溶液中被采用仍然具有挑战性,特别是对于动态复合物。在这里,我们研究了去除真核 mRNA 5'帽结构的双叶脱帽酶 Dcp2,从而有效地终止基因表达。众多的 Dcp2 结构可以分为六个状态,其中催化和调节结构域之间的结构取向有很大的不同。尽管有如此丰富的结构信息,但仍然不可能将这些状态与催化循环或酶的活性相关联。使用甲基横向弛豫优化 NMR 光谱,我们证明只有六个结构域取向中的三个存在于溶液中,其中 Dcp2 采用开放、封闭或催化活性状态。我们展示了 mRNA 底物和激活蛋白 Dcp1 和 Edc1 如何影响这些状态之间的动态平衡,以及这种平衡如何调节催化活性。重要的是,只有在同时存在两种激活剂和 mRNA 底物或 m7GDP 脱帽产物的情况下,复合物的活性状态才能稳定形成,我们根据 Dcp1:Dcp2:Edc1:m7GDP 复合物的晶体结构对此进行了合理化解释。有趣的是,我们发现 Dcp2 的激活机制也导致了底物特异性从细菌到真核 mRNA 的转变。